Since 2012 the dutch metropolitan area (the metropole region of amsterdam, the city of amsterdam, rotterdam, the hague, utrecht ) cooperate in finding the best way to stimulate electric mobility through the implementation of a public charging infrastructure. with more than 5600 charge points and 1.6 million charge sessions in the last two years this is one of the most extensively used public charging infrastructure available worldwide. in this paper a benchmark study is carried out to identify different charge patterns between these 5 leading areas with an extensive public charging infrastructure to establish whether and how charge behaviour (e.g. charged volume, capacity utilization, unique users) differs between cities. based on the results first explanations for possible differences in charge patterns between cities will be provided. the study aims to contribute to a better understanding of the utilization of public charging infrastructure in a metropolitan area existing of four city centres and the amsterdam metropolitan area and to provide input for policy makers to prepare a public charging infrastructure ready for the projected growth of electric mobility in the next five years.
DOCUMENT
Combining electric cars with utility services seems to be a natural fit and holds the promise to tackle various mobility as well as electricity challenges at the same time. So far no viable business model for vehicle-to-grid technology has emerged, raising the question which characteristics a vehicle-to-grid business model should have. Drawing on an exploratory study amongst 189 Dutch consumers this study seeks to understand consumer preferences in vehicle-to-grid business models using conjoint analysis, factor analysis and cluster analysis. The results suggest that consumers prefer private ownership of an EV and a bidirectional charger instead of community ownership of bidirectional charger, they prefer utility companies instead of car companies as the aggregator and they require home and public charging. The most salient attributes in a V2G business model seem to be functional rather than financial or social. The customer segment with the highest willingness to adopt V2G prefers functional attributes. Based on the findings, the study proposes a business model that incorporates the derived preferences
DOCUMENT
Deployment and management of environmental infrastructures, such as charging infrastructure for Electric Vehicles (EV), is a challenging task. For policy makers, it is particularly difficult to estimate the capacity of current deployed public charging infrastructure for a given EV user population. While data analysis of charging data has shown added value for monitoring EV systems, it is not valid to linearly extrapolate charging infrastructure performance when increasing population size.We developed a data-driven agent-based model that can explore future scenarios to identify non-trivial dynamics that may be caused by EV user interaction, such as competition or collaboration, and that may affect performance metrics. We validated the model by comparing EV user activity patterns in time and space.We performed stress tests on the 4 largest cities the Netherlands to explore the capacity of the existing charging network. Our results demonstrate that (i) a non-linear relation exists between system utilization and inconvenience even at the base case; (ii) from 2.5x current population, the occupancy of non-habitual charging increases at the expense of habitual users, leading to an expected decline of occupancy for habitual users; and (iii) from a ratio of 0.6 non-habitual users to habitual users competition effects intensify. For the infrastructure to which the stress test is applied, a ratio of approximately 0.6 may indicate a maximum allowed ratio that balances performance with inconvenience. For policy makers, this implies that when they see diminishing marginal performance of KPIs in their monitoring reports, they should be aware of potential exponential increase of inconvenience for EV users.
DOCUMENT