''On February 6th, 2023, two severe earthquakes struck southeastern Türkiye near the Syrian border. The first earthquake, Mw7.8, occurred at 04:17 local time in the East Anatolian Fault Zone near the city of Gaziantep. The second earthquake, Mw7.5, occurred approximately 9 h later at 13:24 local time near Elbistan County, in Kahramanmaraş province. These seismic events ruptured multiple segments of the East Anatolian Fault Zone (EAFZ), with rupture lengths exceeding 300 km, and deformation exceeding 5 m on both sides of the faults. In this study, we aim to analyze characteristics of the strong ground motion induced by the mainshocks, focusing on ground motion intensity measures such as the peak ground acceleration (PGA), the peak ground velocity (PGV), and the pseudo-acceleration response spectra (PSA). The first earthquake produced extremely high PGA values in both horizontal (> 2 g) and vertical (> 1 g) components. At near field distances, large PGVs are measured (> 180 cm/s) with more than 30 impulsive motions which may indicate source-related effects. Large spectral demands are also recorded for both earthquakes, partially underestimated by Ground Motion Models (GMMs), especially in the near-field. Specifically, we compare the PSA for horizontal directions with the design spectra provided by both the new and previous Turkish building codes. We also present building and ground damage observations that provide insights into the observed ground motions in the heavily damaged areas.''
DOCUMENT
LINK
Precast concrete structures are preferred for facilities with large open areas due to easiness in construction. Such structures are typically composed of individual columns and long-span beams, and are quite flexible and of limited redundancy. In this paper, nonlinear dynamic analyses of a typical such structure are conducted using as excitation 54 ground motions recorded on top of a variety of soils (hard, soft, and liquefied soil sites). The results show that liquefaction-affected level-ground motions systematically impose a greater threat to precast-concrete structures in terms of seismic demand, even when low values of elastic spectral acceleration prevail, as opposed to soft-soil records and even more to hard-soil ones. Thus, elastic spectral acceleration appears to be an insufficient engineering demand parameter for design. Soil effects, the “signature” of which is born on ground motions, are first uncovered using wavelet analysis to detect the evolution of the energy and frequency content of the ground motion in the time domain. From this, the changes in effective (“dominant”) excitation period are noted, persuasively attributed to the nature of the soil, and finally correlated with the observed structural behavior.
LINK
The pipelines are buried structures. They move together with the soil during a seismic event. They are affected from ground motions. The project aims to find out the possible effects of Groningen earthquakes on pipelines of Loppersum and Slochteren.This project is devised for conducting an initial probe on the available data to see the possible actions that can be taken, initially on these two pilot villages, Loppersum and Slochteren, for detecting the potential relationship between the past damages and the seismic activity.Lifeline infrastructure, such as water mains and sewerage systems, covering our urbanised areas like a network, are most of the times, sensitive to seismic actions. This sensitivity can be in the form of extended damage during seismic events, or other collateral damages, such as what happened in Christchurch Earthquakes in 2011 in New Zealand when the sewerage system of the city was filled in with tonnes of sand due to liquefaction.Regular damage detection is one of key solutions for operational purposes. The earthquake mitigation, however, needs large scale risk studies with expected spatial distribution of damages for varying seismic hazard levels.