Background: Children with difficulties in listening and understanding speech despite normal peripheral hearing, can be diagnosed with the diagnosis Auditory Processing Disorder (A). However, there are doubts about the validity of this diagnosis. The aim of this study was to examine the relation between the listening difficulties of children between 8 and 12 years with suspected A and the attention, working memory, nonverbal intelligence and communication abilities of these children.Material and methods: In this case-control study we examined 10 children who reported listening difficulties in spite of normal peripheral hearing (3 referred by speech-language pathologist in the Northern Netherlands, 6 by an audiological center in the Southern Netherlands and one by parental concern) and 21 typically developing children (recruitment through word of mouth and by the website Taalexpert.nl), ages 8;0 to 12;0 years. The parents of all children completed three questionnaires about history, behavioral symptoms of ADHD, and communication skills (Children’s Communication Checklist). Teachers of the children completed the Children’s Auditory Processing Performance Scale (CHAPPS). Children were assessed for auditory processing abilities (speech-in-noise, filtered speech, binaural fusion, dichotic listening), nonverbal intelligence (Raven’s Coloured Progressive Matrices), and working memory (Clinical Evaluation of Language Fundamentals). Auditory and visual attention was studied with four behavioral tests of the WAFF battery of the Vienna Test System (Schuhfried).Results: Preliminary analysis shows no differences between groups on the auditory processing tests and nonverbal intelligence quotient. Children in the experimental group have poorer communication performance (parent report), poorer listening skills (teacher report), and poorer working memory and attention skills (behavioral tests).Conclusions: The results of this study showed that there is a difference between children with listening complaints and typically developing children, but that the problems are not specific to the auditory modality. There seems to be no evidence for the validity of an auditory deficit.
Purpose: The purpose of this letter is to respond to Moncrieff's (2017) letter to the editor, "Response to de Wit et al., 2016, 'Characteristics of Auditory Processing Disorders: A Systematic Review,'" published in May 2017 by the Journal of Speech, Language, and Hearing Research.Conclusion: We believe that our original conclusions are valid given the limited evidence that is currently available about the etiology of auditory processing disorders (APD). The focus of our systematic review was to identify the characteristics of children with a diagnosis of APD or a suspicion of APD. The results of our study showed that the characteristics of these children are not specific or limited to the auditory modality but are multimodal instead. In our view, it is incorrect to use the diagnosis APD, because there is not necessarily a specific auditory deficit in a large group of children suffering from listening difficulties. Before we start using any new diagnoses, a better insight into how bottom-up and top-down processes are precisely involved in listening needs to be developed. In addition, more insight is needed with respect to the similarities and differences between the different developmental disorders of children.
To study the ways in which compounds can induce adverse effects, toxicologists have been constructing Adverse Outcome Pathways (AOPs). An AOP can be considered as a pragmatic tool to capture and visualize mechanisms underlying different types of toxicity inflicted by any kind of stressor, and describes the interactions between key entities that lead to the adverse outcome on multiple biological levels of organization. The construction or optimization of an AOP is a labor intensive process, which currently depends on the manual search, collection, reviewing and synthesis of available scientific literature. This process could however be largely facilitated using Natural Language Processing (NLP) to extract information contained in scientific literature in a systematic, objective, and rapid manner that would lead to greater accuracy and reproducibility. This would support researchers to invest their expertise in the substantive assessment of the AOPs by replacing the time spent on evidence gathering by a critical review of the data extracted by NLP. As case examples, we selected two frequent adversities observed in the liver: namely, cholestasis and steatosis denoting accumulation of bile and lipid, respectively. We used deep learning language models to recognize entities of interest in text and establish causal relationships between them. We demonstrate how an NLP pipeline combining Named Entity Recognition and a simple rules-based relationship extraction model helps screen compounds related to liver adversities in the literature, but also extract mechanistic information for how such adversities develop, from the molecular to the organismal level. Finally, we provide some perspectives opened by the recent progress in Large Language Models and how these could be used in the future. We propose this work brings two main contributions: 1) a proof-of-concept that NLP can support the extraction of information from text for modern toxicology and 2) a template open-source model for recognition of toxicological entities and extraction of their relationships. All resources are openly accessible via GitHub (https://github.com/ontox-project/en-tox).
Cell-based production processes in bioreactors and fermenters need to be carefully monitored due to the complexity of the biological systems and the growth processes of the cells. Critical parameters are identified and monitored over time to guarantee product quality and consistency and to minimize over-processing and batch rejections. Sensors are already available for monitoring parameters such as temperature, glucose, pH, and CO2, but not yet for low-concentration substances like proteins and nucleic acids (DNA). An interesting critical parameter to monitor is host cell DNA (HCD), as it is considered an impurity in the final product (downstream process) and its concentration indicates the cell status (upstream process). The Molecular Biosensing group at the Eindhoven University of Technology and Helia Biomonitoring are developing a sensor for continuous biomarker monitoring, based on Biosensing by Particle Motion. With this consortium, we want to explore whether the sensor is suitable for the continuous measurement of HCD. Therefore, we need to set-up a joint laboratory infrastructure to develop HCD assays. Knowledge of how cells respond to environmental changes and how this is reflected in the DNA concentration profile in the cell medium needs to be explored. This KIEM study will enable us to set the first steps towards continuous HCD sensing from cell culture conditions controlling cell production processes. It eventually generates input for machine learning to be able to automate processes in bioreactors and fermenters e.g. for the production of biopharmaceuticals. The project entails collaboration with new partners and will set a strong basis for subsequent research projects leading to scientific and economic growth, and will also contribute to the human capital agenda.
Aiming for a more sustainable future, biobased materials with improved performance are required. For biobased vinyl polymers, enhancing performance can be achieved by nanostructuring the material, i.e. through the use of well-defined (multi-)block, gradient, graft, comb, etc., copolymer made by controlled radical polymerization (CRP). Dispoltec has developed a new generation of alkoxyamines, which suppress termination and display enhanced end group stability compared to state-of-art CRP. Hence, these alkoxyamines are particularly suited to provide access to such biobased nanostructured materials. In order to produce alkoxyamines in a more environmentally benign and efficient manner, a photo-chemical step is beneficial for the final stage in their synthesis. Photo-flow chemistry as a process intensification technology is proposed, as flow chemistry inherently leads to more efficient reactions. In particular, photo-flow offers the benefit of significantly enhancing reactant concentrations and reducing batch times due to highly improved illumination. The aim of this project is to demonstrate at lab scale the feasibility of producing the new generation of alkoxy-amines via a photo-flow process under industrially relevant conditions regarding concentration, duration and efficiency. To this end, Zuyd University of Applied Sciences (Zuyd), CHemelot Innovation and Learning Labs (CHILL) and Dispoltec BV want to enter into a collaboration by combining the expertise of Dispoltec on alkoxyamines for CRP with those of Zuyd and CHILL on microreactor technology and flow chemistry. Improved access to these alkoxyamines is industrially relevant for initiator manufacturers, as well as producers of biobased vinyl polymers and end-users aiming to enhance performance through nanostructuring biobased materials. In addition, access in this manner is a clear demonstration for the high industrial potential of photo-flow chemistry as sustainable manufacturing tool. Further to that, students and professionals working together at CHILL will be trained in this emerging, industrially relevant and sustainable processing tool.
‘Dieren in de dijk’ aims to address the issue of animal burrows in earthen levees, which compromise the integrity of flood protection systems in low-lying areas. Earthen levees attract animals that dig tunnels and cause damages, yet there is limited scientific knowledge on the extent of the problem and effective approaches to mitigate the risk. Recent experimental research has demonstrated the severe impact of animal burrows on levee safety, raising concerns among levee management authorities. The consortium's ambition is to provide levee managers with validated action perspectives for managing animal burrows, transitioning from a reactive to a proactive risk-based management approach. The objectives of the project include improving failure probability estimation in levee sections with animal burrows and enhancing risk mitigation capacity. This involves understanding animal behavior and failure processes, reviewing existing and testing new deterrence, detection, and monitoring approaches, and offering action perspectives for levee managers. Results will be integrated into an open-access wiki-platform for guidance of professionals and in education of the next generation. The project's methodology involves focus groups to review the state-of-the-art and set the scene for subsequent steps, fact-finding fieldwork to develop and evaluate risk reduction measures, modeling failure processes, and processing diverse quantitative and qualitative data. Progress workshops and collaboration with stakeholders will ensure relevant and supported solutions. By addressing the knowledge gaps and providing practical guidance, the project aims to enable levee managers to effectively manage animal burrows in levees, both during routine maintenance and high-water emergencies. With the increasing frequency of high river discharges and storm surges due to climate change, early detection and repair of animal burrows become even more crucial. The project's outcomes will contribute to a long-term vision of proactive risk-based management for levees, safeguarding the Netherlands and Belgium against flood risks.