Background: Dental fear and uncooperative behavior can hinder dental treatment quality. Pediatric Procedural Sedation and Analgesia (PPSA) is used to facilitate treatment when the coping capacity is exceeded. Out-of-hospital PPSA has been associated with more adverse outcomes compared to when it is used in hospital-based settings. The updated Dutch PPSA guidelines have increased costs and raised concerns about the accessibility of specialized high-quality dental care for children in the Netherlands. This study aimed to investigate the impact of the updated 2017 guidelines on the occurrence rate of adverse events during PPSA in twelve Dutch dental clinics. Methods: The data of 25,872 children who were treated at twelve dental clinics between 1997 and 2019 were analyzed. A logistic two-level mixed-effects model was used to estimate the updated guidelines’ impacts on adverse events. Results: The OR of the occurrence rate of an adverse event adjusted for age, weight, and duration of treatment was 0.75 (95% CI 0.64–0.89) after the implementation of the updated guidelines. This outcome was significant with p = 0.001, indicating a protective effect. Conclusions: Our findings demonstrate that there was a significant reduction in adverse events after the implementation of the updated guideline and highlight the importance of adhering to evidence-based practices in out-of-hospital dental clinics.
Nurses often have difficulties with using interdisciplinary stroke guidelines for patients with stroke as they do not focus sufficiently on nursing. Therefore, the Stroke Nursing Guideline (SNG) was developed and implemented. The aim of this study was to determine the implementation and feasibility of the SNG in terms of changes in documentation and use of the guideline in the care of stroke patients on Neurological and Rehabilitation wards, barriers and facilitators, and nurses' and auxiliary nurses' view of the implementation.
In the Netherlands municipalities are searching for guidelines for a heat resilient design of the urban space. One of the guidelines which has recently been picked up is that each house should be within a 300 meter of an attractive cool spot outside. The reason is that houses might get too hot during a heat wave and therefor it is important that inhabitants have an alternative place to go. The distance of 300 m has been adopted because of practical reasons. This guideline has been proposed after a research of the University of Amsterdam of applied sciences and TAUW together with 15 municipalities.To help municipalities to take cool spots into account in their urban design the national organization for disseminating climate data has developed a distance to coolness map for all Dutch built up areas. This map shows the cool spots with a minimum of 200 m2 based on a map of the PET for a hot summer day (2*2 m2 spatial resolution). Furthermore the map shows the walking distance for each house (via streets and foot paths) to the nearest cool spot.This map helps as a starting point. Because not all cool spots are attractive cool spots. A research in 2021 showed what further basis and optional characteristics those cool spots should have: e.g. sufficiently large, combination of sun and shadow, benches, quiet, safe and clean. In fact those places should be attractive places to stay for most days of the year.With the distance to attractive cool spots municipalities can easily see which areas lack attractive cool spots. The distance to cool spot maps is therefore a way to simplify complex climate data into an understandable and practical guideline. This is an improvement as compared to using thresholds for temperatures and thresholds for duration of exceedance of those temperatures in a guideline.: Municipalities like this practical approach that combines climate adaptation with improving the livability of a city throughout the year.
Designing cities that are socially sustainable has been a significant challenge until today. Lately, European Commission’s research agenda of Industy 5.0 has prioritised a sustainable, human-centric and resilient development over merely pursuing efficiency and productivity in societal transitions. The focus has been on searching for sustainable solutions to societal challenges, engaging part of the design industry. In architecture and urban design, whose common goal is to create a condition for human life, much effort was put into elevating the engineering process of physical space, making it more efficient. However, the natural process of social evolution has not been given priority in urban and architectural research on sustainable design. STEPS stems from the common interest of the project partners in accessible, diverse, and progressive public spaces, which is vital to socially sustainable urban development. The primary challenge lies in how to synthesise the standardised sustainable design techniques with unique social values of public space, propelling a transition from technical sustainability to social sustainability. Although a large number of social-oriented studies in urban design have been published in the academic domain, principles and guidelines that can be applied to practice are large missing. How can we generate operative principles guiding public space analysis and design to explore and achieve the social condition of sustainability, developing transferable ways of utilising research knowledge in design? STEPS will develop a design catalogue with operative principles guiding public space analysis and design. This will help designers apply cross-domain knowledge of social sustainability in practice.
The pace of technology advancements continues to accelerate, and impacts the nature of systems solutions along with significant effects on involved stakeholders and society. Design and engineering practices with tools and perspectives, need therefore to evolve in accordance to the developments that complex, sociotechnical innovation challenges pose. There is a need for engineers and designers that can utilize fitting methods and tools to fulfill the role of a changemaker. Recognized successful practices include interdisciplinary methods that allow for effective and better contextualized participatory design approaches. However, preliminary research identified challenges in understanding what makes a specific method effective and successfully contextualized in practice, and what key competences are needed for involved designers and engineers to understand and adopt these interdisciplinary methods. In this proposal, case study research is proposed with practitioners to gain insight into what are the key enabling factors for effective interdisciplinary participatory design methods and tools in the specific context of sociotechnical innovation. The involved companies are operating at the intersection between design, technology and societal impact, employing experts who can be considered changemakers, since they are in the lead of creative processes that bring together diverse groups of stakeholders in the process of sociotechnical innovation. A methodology will be developed to capture best practices and understand what makes the deployed methods effective. This methodology and a set of design guidelines for effective interdisciplinary participatory design will be delivered. In turn this will serve as a starting point for a larger design science research project, in which an educational toolkit for effective participatory design for socio-technical innovation will be designed.
Artificial Intelligence (AI) wordt realiteit. Slimme ICT-producten die diensten op maat leveren accelereren de digitalisering van de maatschappij. De grote innovaties van de komende jaren –zelfrijdende auto’s, spraakgestuurde virtuele assistenten, autodiagnose systemen, robots die autonoom complexe taken uitvoeren – zijn datagedreven en hebben een AI-component. Dit gaat de rol van professionals in alle domeinen, gezondheidzorg, bouwsector, financiële dienstverlening, maakindustrie, journalistiek, rechtspraak, etc., raken. ICT is niet meer volgend en ondersteunend (een ‘enabling’ technologie), maar de motor die de transformatie van de samenleving in gang zet. Grote bedrijven, overheidsinstanties, het MKB, en de vele startups in de Brainport regio zijn innovatieve datagedreven scenario’s volop aan het verkennen. Dit wordt nog eens versterkt door de democratisering van AI; machine learning en deep learning algoritmes zijn beschikbaar zowel in open source software als in Cloud oplossingen en zijn daarmee toegankelijk voor iedereen. Data science wordt ‘applied’ en verschuift van een PhD specialisme naar een HBO-vaardigheid. Het stadium waarin veel bedrijven nu verkeren is te omschrijven als: “Help, mijn AI-pilot is succesvol. Wat nu?” Deze aanvraag richt zich op het succesvol implementeren van AI binnen de context van softwareontwikkeling. De onderzoeksvraag van dit voorstel is: “Hoe kunnen we state-of-the-art data science methoden en technieken waardevol en verantwoord toepassen ten behoeve van deze slimme lerende ICT-producten?” De postdoc gaat fungeren als een linking pin tussen alle onderzoeksprojecten en opdrachten waarbij studenten ICT-producten met AI (machine learning, deep learning) ontwikkelen voor opdrachtgevers uit de praktijk. Door mee te kijken en mee te denken met de studenten kan de postdoc overzicht en inzicht creëren over alle cases heen. Als er overzicht is kan er daarna ook gestuurd worden op de uit te voeren cases om verschillende deelaspecten samen met de studenten te onderzoeken. Deliverables zijn rapporten, guidelines en frameworks voor praktijk en onderwijs, peer-reviewed artikelen en kennisdelingsevents.