Aim. Although cultural dimensions theory is a topical strand of quantitative cultural research, few intercultural simulation games use it. We present the design and review of the application of OASISTAN, an intercultural role-playing simulation game that is specifically based on cultural dimensions theory. Method. OASISTAN was first designed in 1999 for use in Master’s courses on cross-cultural management at Delft University of Technology in the Netherlands, attracting 20-23 year old students with a Bachelor degree in engineering and from various cultural backgrounds. Since its first design the game has been played approximately 45 times at Delft University of Technology in the Netherlands and three times at Harbin Institute of Technology in China in the years 2006-2008. We reviewed their experiences designing and facilitating OASISTAN since 1999. Results. The game has a no-tech role-play design and revolves around the geopolitically complex region of the Caspian Sea, specifically the fictional country of ‘Oasistan’. The game consists of students forming small teams of Oasistani, Western and non-Western public/private actors collaborating with each other to try and reach the common goal of oil exploration and production in this country. In total 15-30 students were involved. We found that OASISTAN allowed its players not only to intensely experience the difficulty and awkwardness of being confronted with cultural differences, but also to interpret and understand these differences through cultural dimensions. Students who played OASISTAN identified ten out of the 12 dimensions by Maleki and De Jong. The two dimensions that students were not able to identify are uncertainty avoidance and collaborativeness. Conclusion. OASISTAN shows how a game design field (i.e., intercultural simulation gaming) can be reinvigorated in light of new or updated scientific theories pertaining to the field’s subject matter (i.e., cultural dimensions). Several opportunities for future research are identified.
MULTIFILE
We present a simple analytical formalism based on the Lorentz-Scherrer equation and Bernoulli statistics for estimating the fraction of crystallites (and the associated uncertainty parameters) contributing to all finite Bragg peaks of a typical powder pattern obtained from a static polycrystalline sample. We test and validate this formalism using numerical simulations, and show that they can be applied to experiments using monochromatic or polychromatic (pink-beam) radiation. Our results show that enhancing the sampling efficiency of a given powder diffraction experiment for such samples requires optimizing the sum of the multiplicities of reflections included in the pattern along with the wavelength used in acquiring the pattern. Utilizing these equations in planning powder diffraction experiments for sampling efficiency is also discussed.
The improvement of passive fire protection of storage vessels is a key factor to enhance safety among the LPG distribution chain. A thermal and mechanical model based on finite elements simulations was developed to assess the behaviour of full size tanks used for LPG storage and transportation in fire engulfment scenarios. The model was validated by experimental results. A specific analysis of the performance of four different reference coating materials was then carried out, also defining specific key performance indicators (KPIs) to assess design safety margins in near-miss simulations. The results confirmed the wide influence of coating application on the expected vessel time to failure due to fire engulfment. Aquite different performance of the alternative coating materialswas evidenced. General correlationswere developed among the vessel time to failure and the effective coating thickness in full engulfment scenarios, providing a preliminary assessment of the coating thickness required to prevent tank rupture for a given time lapse. The KPIs defined allowed the assessment of the available safety margins in the reference scenarios analyzed and of the robustness of thermal protection design.
MULTIFILE