Hands‐on simulations are increasingly used in vocational oriented curricula to create meaningful, occupation‐related learning experiences. However, more insight is required about precisely what characteristics in hands‐on simulations enhance outcomes that students need for their future occupation, such as competencies. This study aims to examine how constructivist pedagogical–didactic design principles affect competence development of senior vocational education and professionally oriented bachelor's degree students in a wide range of hands‐on simulations. For this purpose, 23 hands‐on simulations were studied. Teachers rated the degree of authenticity and self‐directedness of the hands‐on simulations. Student perceptions (N = 516) of value, authenticity and self‐directedness (operationalized as choice), as well as their competence development, were gathered using questionnaires. The results of the hierarchical regression analyses showed that: (1) authenticity and self‐directedness did not automatically lead to more competence development; and (2) student perceptions of perceived value, authenticity and choice of how to perform tasks were the main predictors of competence development in the simulations. Nonetheless, the additional mediation analyses suggest that it is still important for teachers to invest in learning activities that stimulate self‐directedness as these activities indirectly predicted competence development, through student perceptions. Several reasons for the results are discussed, among them the mismatch between teachers and students of what was considered authentic, complexity of the simulations, the teacher's role as facilitator instead of activator and the lack of choice possibilities. Ideas for future research, as well as practical implications concerning designing and implementing hands‐on simulations for fostering competence development, are suggested.
LINK
For many decades, teacher-structured hands-on simulations have been used in education mainly for developing procedural and technical skills. Stimulating contemporary learning outcomes suggests more constructivist approaches. The aim of this study is to examine how self-regulated learning (SRL), an important constructivist learning environment characteristic, is expressed in hands-on simulations. Via structured observations of teachers’ SRL promoting strategies and students’ SRL strategies in eight hands-on simulations, along the three phases of SRL, this study is the first to expose whether students and teachers use SRL in hands-on simulations, what these strategies look like and what their quality is. The results show that both students and teachers demonstrate SRL behaviour in the forethought, performance and reflection phase to some extent, but that they vary considerably in their occurrences, form and quality and provide opportunities for improvement. For example, teacher strategies ‘modelling’ and ‘scaffolding’ were often used, while ‘giving attribution feedback’ and ‘evaluation’ were lacking. The student strategy ‘proposing methods for task performance’ was used regularly, while ‘goal-setting’ and ‘self-monitoring’ were often absent. An overview shows exemplary teacher and student behaviours in the SRL phases with lower, medium and higher quality in hands-on simulations.
LINK
Thinking back and forth between observing physical phenomena and developing scientific ideas, also known as hands-on and minds-on learning, is essential for the development of scientific reasoning in primary science education. In the Netherlands, inquiry-based learning is advocated as the preferred teaching method. However, most teachers lack time and sufficient pedagogical content knowledge to adequately provide the teaching required for this. To address this problem, we designed and evaluated science and technology lessons, consisting of hands-on experiments combined with interactive diagrams, aimed at scaffolding primary school students (9–12 years) in the development of their scientific reasoning. Our proof-of-concept uses an online application, that lets students work through the lessons while alternating hands-on and minds-on activities. A study was carried out (n = 490) showing that most students successfully complete the lessons within a standard lesson timeframe. The approach enables students to effectively apply several types of scientific reasoning and to do so more autonomously than in traditional science classes.
DOCUMENT