Laboratory experiments are important pedagogical tools in engineering courses. Restrictions related to the COVID-19 pandemic made it very difficult or impossible for laboratory classes to take place, resulting on a fast transition to simulation as an approach to guarantee the effectiveness of teaching. Simulation environments are powerful tools that can be adopted for remote classes and self-study. With these tools, students can perform experiments and, in some cases, make use of the laboratory facilities from outside of the University. This paper proposes and describes two free tools developed during the COVID-19 pandemic lock-down that allowed students to work from home, namely a set of simulation experiments and a Hardware-in-the-loop simulator, accessible 24/7. Two approaches in Python and C languages are presented, both in the context of Robotics courses for Engineering students. Successful results and student feedback indicate the effectiveness of the proposed approaches in institutions in Portugal and in the Netherlands.
LINK
The installation of facilities replicating the realworld condition is often required for carrying out meaningful tests on new devices and for collecting data with the aim to create realistic device model. However, these facilities require huge investments, as well as areas where they can be properly installed. In this paper, we present a test infrastructure exploiting the concept of Remote Power Hardware-In-the-Loop (RPHIL), applied for characterizing the performances of a 8kW Proton Exchange Membrane (PEM) electrolyser installed at the Hanze University of Applied Sciences in Groningen (The Netherlands). The electrolyser is subjected to different test conditions imposed both locally and remotely. The results show that this measurement procedure is effective and can open new perspectives in the way to share and exploit the existing research infrastructure in Europe
DOCUMENT
New technologies or approaches are being widely developed and proposed to be deployed in real energy systems to improve desired objectives; however supporting decision making processes to select best solutions in terms of performance and efficient following cost-benefit analysis require some sort of scientific evidence based tools. These tools should be reliable, robust, and capable of demonstrating the behavior and impact of newly developed devices or algorithms in different pre-defined scenarios. Therefore, new approaches and technologies need to be tested and verified using a safe laboratory test environment.
DOCUMENT
The consistent demand for improving products working in a real-time environment is increasing, given the rise in system complexity and urge to constantly optimize the system. One such problem faced by the component supplier is to ensure their product viability under various conditions. Suppliers are at times dependent on the client’s hardware to perform full system level testing and verify own product behaviour under real circumstances. This slows down the development cycle due to dependency on client’s hardware, complexity and safety risks involved with real hardware. Moreover, in the expanding market serving multiple clients with different requirements can be challenging. This is also one of the challenges faced by HyMove, who are the manufacturer of Hydrogen fuel cells module (https://www.hymove.nl/). To match this expectation, it starts with understanding the component behaviour. Hardware in the loop (HIL) is a technique used in development and testing of the real-time systems across various engineering domain. It is a virtual simulation testing method, where a virtual simulation environment, that mimics real-world scenarios, around the physical hardware component is created, allowing for a detailed evaluation of the system’s behaviour. These methods play a vital role in assessing the functionality, robustness and reliability of systems before their deployment. Testing in a controlled environment helps understand system’s behaviour, identify potential issues, reduce risk, refine controls and accelerate the development cycle. The goal is to incorporate the fuel cell system in HIL environment to understand it’s potential in various real-time scenarios for hybrid drivelines and suggest secondary power source sizing, to consolidate appropriate hybridization ratio, along with optimizing the driveline controls. As this is a concept with wider application, this proposal is seen as the starting point for more follow-up research. To this end, a student project is already carried out on steering column as HIL