Abstract Healthcare organizations operate within a network of governments, insurers, inspection services and other healthcare organizations to provide clients with the best possible care. The parties involved must collaborate and are accountable to each other for the care provided. This has led to a diversity of administrative processes that are supported by a multi-system landscape, resulting in administrative burdens among healthcare professionals. Management methods, such as Enterprise Architecture (EA), should help to develop and manage such landscapes, but they are systematic, while the network of healthcare parties is dynamic. The aim of this research is therefore to develop an EA framework that fits the dynamics of network organizations (such as long-term healthcare). This research proposal outlines the practical and scientific relevance of this research and the proposed method. The current status and next steps are also described.
In the dynamic environment of increasing regulations, increasing patient demand, decentralization of budgets and enforcement of efficiency, small sized healthcare institutions in the Netherlands are having a difficult time. Although these service providers are usually capable of flexibly delivering healthcare, the investment and overhead for implementing and executing on required quality management standards like ISO 9001 is difficult. In this paper we construct a method for the implementation of an IT-enabled quality management system for small sized healthcare institutions, which is applied through case study. The case organisation provides intra- and extramural care for mentally handicapped persons and young adults with a psychiatric disorder. The quality management system implementation is based on 1) a lightweight IT infrastructure (based at a secure data centre and accessible through remote login) implying secure storage of patients' medical and personal information. Furthermore, the Deming (Deming, 1982) cycle enabled processes and protocols are 2) described in an e-handbook and prototyped via an open source process management system which supports the quality regulation demanded for providing care to patients. The case study supports the validity of our method and the fact that small sized healthcare institutions are able to execute their care while adhering to ISO 9001-like standards, with limited initial costs and relatively low cost of ownership
Abstract from article: The Dutch healthcare system has changed towards a system of regulated competition to contain costs and to improve efficiency and quality of care. This paper provides: (1) a brief as-is overview of the changes for primary care, based on explorative literature reviews; (2) provides noteworthy remarks as for the way primary and secondary healthcare is organised; (3) an example of an E-health portal illustrating implemented processes within the Dutch context and (4) a proposed research agenda on various e-health topics. Noteworthy remarks are: (1) government, insurer, healthcare provider and patient are main actors within the Dutch healthcare system; (2) general practitioners (GP’s) are gatekeepers to secondary and other care providers; (3) the illustrated portal with a patient oriented design, provides access to applications implemented at care providers resulting in increased electronic availability and increased patient satisfaction; (4) a variety of fragmented information systems at health care providers exists, which leaves room for standardisation and increased efficiency. We end with suggestions for future research.
Dutch society faces major future challenges putting populations’ health and wellbeing at risk. An ageing population, increase of chronic diseases, multimorbidity and loneliness lead to more complex healthcare demands and needs and costs are increasing rapidly. Urban areas like Amsterdam have to meet specific challenges of a growing and super divers population often with a migration background. The bachelor programs and the relating research groups of social work and occupational therapy at the Amsterdam University of Applied Sciences innovate their curricula and practice-oriented research by multidisciplinary and cross-domain approaches. Their Centres of Expertise foster interprofessional research and educational innovation on the topics of healthy ageing, participation, daily occupations, positive health, proximity, community connectedness and urban innovation in a social context. By focusing on senior citizens’ lives and by organizing care in peoples own living environment. Together with their networks, this project aims to develop an innovative health promotion program and contribute to the government missions to promote a healthy and inclusive society. Collaboration with stakeholders in practice based on their urgent needs has priority in the context of increasing responsibilities of local governments and communities. Moreover, the government has recently defined social base as being the combination of citizen initiatives, volunteer organizations , caregivers support, professional organizations and support of vulnerable groups. Kraktie Foundations is a community based ethno-cultural organization in south east Amsterdam that seeks to research and expand their informal services to connect with and build with professional care organizations. Their aim coincides with this project proposal: promoting health and wellbeing of senior citizens by combining intervention, participatory research and educational perspectives from social work, occupational therapy and hidden voluntary social work. With a boundary crossing innovation of participatory health research, education and Kraktie’s work in the community we co-create, change and innovate towards sustainable interventions with impact.
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.