Abstract Frailty syndrome (FS) is an independent predictor of mortality in cardiovascular disease and is found in 15-74% of patients with heart failure (HF). The syndrome has a complex, multidimensional aetiology and contributes to adverse outcomes. Proper FS diagnosis and treatment determine prognosis and support the evaluation of treatment outcomes. Routine FS assessment for HF patients should be included in daily clinical practice as an important prognostic factor within a holistic process of diagnosis and treatment. Multidisciplinary team members, particularly nurses, play an important role in FS assessment in hospital and primary care settings, and in the home care environment. Raising awareness of concurrent FS in patients with HF patients and promoting targeted interventions may contribute to a decreased risk of adverse events, and a better prognosis and quality of life.
LINK
Abstract: Background: Little is known about frailty among patients hospitalized with heart failure (HF). To date, the limited information on frailty in HF is based on a unidimensional view of frailty, in which only physical aspects are considered when determining frailty. The aims of this study were to study different dimensions of frailty (physical, psychological and social) in patients with HF and the effect of different dimensions of frailty on the incidence of heart failure. Methods: The study used a cross-sectional design and included 965 patients hospitalized for heart failure and 164 healthy controls. HF was defined according to the ESC guidelines. The Tilburg Frailty Indicator (TFI) was used to assess frailty. Probit regression analyses and chi-square statistics were used to examine associations between the occurrence of heart failure and TFI domains of frailty. Results: Patients diagnosed with frailty were 15.3% more likely to develop HF compared to those not diagnosed with frailty (p < 0.001). An increase in physical, psychological and social frailty corresponded to an increased risk of HF of 2.9% (p < 0.001), 4.4% (p < 0.001) and 6.6% (p < 0.001), respectively. Conclusions: We found evidence of the association between different dimensions of frailty and incidence of HF.
DOCUMENT
The prevention and diagnosis of frailty syndrome (FS) in cardiac patients requires innovative systems to support medical personnel, patient adherence, and self-care behavior. To do so, modern medicine uses a supervised machine learning approach (ML) to study the psychosocial domains of frailty in cardiac patients with heart failure (HF). This study aimed to determine the absolute and relative diagnostic importance of the individual components of the Tilburg Frailty Indicator (TFI) questionnaire in patients with HF. An exploratory analysis was performed using machine learning algorithms and the permutation method to determine the absolute importance of frailty components in HF. Based on the TFI data, which contain physical and psychosocial components, machine learning models were built based on three algorithms: a decision tree, a random decision forest, and the AdaBoost Models classifier. The absolute weights were used to make pairwise comparisons between the variables and obtain relative diagnostic importance. The analysis of HF patients’ responses showed that the psychological variable TFI20 diagnosing low mood was more diagnostically important than the variables from the physical domain: lack of strength in the hands and physical fatigue. The psychological variable TFI21 linked with agitation and irritability was diagnostically more important than all three physical variables considered: walking difficulties, lack of hand strength, and physical fatigue. In the case of the two remaining variables from the psychological domain (TFI19, TFI22), and for all variables from the social domain, the results do not allow for the rejection of the null hypothesis. From a long-term perspective, the ML based frailty approach can support healthcare professionals, including psychologists and social workers, in drawing their attention to the nonphysical origins of HF.
DOCUMENT