Current methods for energy diagnosis in heating, ventilation and air conditioning (HVAC) systems are not consistent with process and instrumentation diagrams (P&IDs) as used by engineers to design and operate these systems, leading to very limited application of energy performance diagnosis in practice. In a previous paper, a generic reference architecture – hereafter referred to as the 4S3F (four symptoms and three faults) framework – was developed. Because it is closely related to the way HVAC experts diagnose problems in HVAC installations, 4S3F largely overcomes the problem of limited application. The present article addresses the fault diagnosis process using automated fault identification (AFI) based on symptoms detected with a diagnostic Bayesian network (DBN). It demonstrates that possible faults can be extracted from P&IDs at different levels and that P&IDs form the basis for setting up effective DBNs. The process was applied to real sensor data for a whole year. In a case study for a thermal energy plant, control faults were successfully isolated using balance, energy performance and operational state symptoms. Correction of the isolated faults led to annual primary energy savings of 25%. An analysis showed that the values of set probabilities in the DBN model are not outcome-sensitive. Link to the formal publication via its DOI https://doi.org/10.1016/j.enbuild.2020.110289
The viability of novel network-level circular business models (CBMs) is debated heavily. Many companies are hesitant to implement CBMs in their daily practice, because of the various roles, stakes and opinions and the resulting uncertainties. Testing novel CBMs prior to implementation is needed. Some scholars have used digital simulation models to test elements of business models, but this this has not yet been done systematically for CBMs. To address this knowledge gap, this paper presents a systematic iterative method to explore and improve CBMs prior to actual implementation by means of agent-based modelling and simulation. An agent-based model (ABM) was co-created with case study participants in three Industrial Symbiosis networks. The ABM was used to simulate and explore the viability effects of two CBMs in different scenarios. The simulation results show which CBM in combination with which scenario led to the highest network survival rate and highest value captured. In addition, we were able to explore the influence of design options and establish a design that is correlated to the highest CBM viability. Based on these findings, concrete proposals were made to further improve the CBM design, from company level to network level. This study thus contributes to the development of systematic CBM experimentation methods. The novel approach provided in this work shows that agent-based modelling and simulation is a powerful method to study and improve circular business models prior to implementation.
The Heating Ventilation and Air Conditioning (HVAC) sector is responsible for a large part of the total worldwide energy consumption, a significant part of which is caused by incorrect operation of controls and maintenance. HVAC systems are becoming increasingly complex, especially due to multi-commodity energy sources, and as a result, the chance of failures in systems and controls will increase. Therefore, systems that diagnose energy performance are of paramount importance. However, despite much research on Fault Detection and Diagnosis (FDD) methods for HVAC systems, they are rarely applied. One major reason is that proposed methods are different from the approaches taken by HVAC designers who employ process and instrumentation diagrams (P&IDs). This led to the following main research question: Which FDD architecture is suitable for HVAC systems in general to support the set up and implementation of FDD methods, including energy performance diagnosis? First, an energy performance FDD architecture based on information embedded in P&IDs was elaborated. The new FDD method, called the 4S3F method, combines systems theory with data analysis. In the 4S3F method, the detection and diagnosis phases are separated. The symptoms and faults are classified into 4 types of symptoms (deviations from balance equations, operating states (OS) and energy performance (EP), and additional information) and 3 types of faults (component, control and model faults). Second, the 4S3F method has been tested in four case studies. In the first case study, the symptom detection part was tested using historical Building Management System (BMS) data for a whole year: the combined heat and power plant of the THUAS (The Hague University of Applied Sciences) building in Delft, including an aquifer thermal energy storage (ATES) system, a heat pump, a gas boiler and hot and cold water hydronic systems. This case study showed that balance, EP and OS symptoms can be extracted from the P&ID and the presence of symptoms detected. In the second case study, a proof of principle of the fault diagnosis part of the 4S3F method was successfully performed on the same HVAC system extracting possible component and control faults from the P&ID. A Bayesian Network diagnostic, which mimics the way of diagnosis by HVAC engineers, was applied to identify the probability of all possible faults by interpreting the symptoms. The diagnostic Bayesian network (DBN) was set up in accordance with the P&ID, i.e., with the same structure. Energy savings from fault corrections were estimated to be up to 25% of the primary energy consumption, while the HVAC system was initially considered to have an excellent performance. In the third case study, a demand-driven ventilation system (DCV) was analysed. The analysis showed that the 4S3F method works also to identify faults on an air ventilation system.
Based on the model outcomes, Houtlaan’s energy transition will likely result in congestion and curtailmentproblems on the local electricity grid within the next 5-7 years, possibly sooner if load imbalance between phasesis not properly addressed.During simulations, the issue of curtailment was observed in significant quantities on one cable, resulting in aloss of 8.292 kWh of PV production per year in 2030. This issue could be addressed by moving some of thehouses on the affects cable to a neighboring under-utilized cable, or by installing a battery system near the end ofthe affected cable. Due to the layout of the grid, moving the last 7 houses on the affected cable to the neighboringcable should be relatively simple and cost-effective, and help to alleviate issues of curtailment.During simulations, the issue of grid overloading occurred largely as a result of EV charging. This issue can bestbe addressed by regulating EV charging. Based on current statistics, the bulk of EV charging is expected to occurin the early evening. By prolonging these charge cycles into the night and early morning, grid overloading canlikely be prevented for the coming decade. However, such a control system will require some sort of infrastructureto coordinate the different EV charge cycles or will require smart EV chargers which will charge preferentiallywhen the grid voltage is above a certain threshold (i.e., has more capacity available).A community battery system can be used to increase the local consumption of produced electricity within theneighborhood. Such a system can also be complemented by charging EV during surplus production hours.However, due to the relatively high cost of batteries at present, and losses due to inefficiencies, such a systemwill not be financially feasible without some form of subsidy and/or unless it can provide an energy service whichthe grid operator is willing to pay for (e.g. regulating power quality or line voltage, prolonging the lifetime of gridinfrastructure, etc.).A community battery may be most useful as a temporary solution when problems on the grid begin to occur, untila more cost-effective solution can be implemented (e.g. reinforcing the grid, implementing an EV charge controlsystem). Once a more permanent solution is implemented, the battery could then be re-used elsewhere.The neighborhood of Houtlaan in Assen, the Netherlands, has ambitious targets for reducing the neighborhood’scarbon emissions and increasing their production of their own, sustainable energy. Specifically, they wish toincrease the percentage of houses with a heat pump, electric vehicle (EV) and solar panels (PV) to 60%, 70%and 80%, respectively, by the year 2030. However, it was unclear what the impacts of this transition would be onthe electricity grid, and what limitations or problems might be encountered along the way.Therefore, a study was carried out to model the future energy load and production patterns in Houtlaan. Thepurpose of the model was to identify and quantify the problems which could be encountered if no steps are takento prevent these problems. In addition, the model was used to simulate the effectiveness of various proposedsolutions to reduce or eliminate the problems which were identified