With increase in awareness of the risks posed by climate change and increasingly severe weather events, attention has turned to the need for urgent action. While strategies to respond to flooding and drought are well-established, the effects - and effective response - to heat waves is much less understood. As heat waves become more frequent, longer-lasting and more intense, the Cool Towns project provides cities and municipalities with the knowledge and tools to become heat resilient. The first step to developing effective heat adaptation strategies is identifying which areas in the city experience the most heat stress and who are the residents most affected. This enables decision-makers to prioritise heat adaptation measures and develop a city-wide strategy.The Urban Heat Atlas is the result of four years of research. It contains a collection of heat related maps covering more than 40,000 hectares of urban areas in ten municipalities in England, Belgium, The Netherlands, and France. The maps demonstrate how to conduct a Thermal Comfort Assessment (TCA) systematically to identify heat vulnerabilities and cooling capacity in cities to enable decision-makers to set priorities for action. The comparative analyses of the collated maps also provide a first overview of the current heat resilience state of cities in North-Western Europe.
DOCUMENT
Workpackage 8.1 of the IANOS project is dedicated to developing a community engagement strategy that can be applied in the use cases on the lighthouse islands (Ameland and Terceira) and the fellow islands (Lampedusa, Nisyros and Bora Bora). This report is the deliverable of WP8.1.Within this report an approach to designing a community engagement strategy is formulated that is rooted in scientific research and enriched by best practices from the light house islands and fellow islands.The report describes a general approach to designing a community engagement strategy, that consists of three parts. The first part is dedicated to assessing the situation and project that the community engagement strategy is dedicated to. It describes several factors that are rooted in literature on community engagement and psychological theories. Thesefactors should be assessed in order to be able to design an effective community engagement strategy. The results of this assessment will be used in the second part of the general approach, which describes a method for designing a community engagement strategy. This method is rooted in community engagement literature and draws heavily on some earlier EU projects. The method describes about ten items that together constitutethe strategy and that encompass all relevant issues that need to be addressed in designing community engagement. Finally, the third part of the general approach, describes the way the method and the assessment can be applied in a methodic and robust way. Although the general method is described as a theoretically based approach, it is substantiated not only by theoretical studies, but also by many reports on practical application of various community engagement efforts. In addition to that, all participantsfrom the islands have identified some best practices on community engagement from their own region and/or experience. These best practices are analysed according to the method of meta-analysis. The information from this meta-analysis is used to check the suitability of the general approach and leads to emphasizing those aspects of the approach that are identified as more important within the best practices.
MULTIFILE
This paper presents a method and mock-up design for evaluating the heat-island mitigation effect of porous/water-retentive blocks in a climatic environmental chamber using ambient temperature measurements. To create the proposed method, the heat circulation mechanism of blocks was considered. From this, we specified the climatic chamber design requirements, determined the required components and equipment for the mock-up, and developed the proposed method for evaluating heat-island mitigation performance based on ambient temperature. Using the proposed mock-up design and method, we confirmed that both surface and air temperatures were lower when porous/water-retentive blocks were installed compared to conventional blocks. This method can be used to analyze the difference between surface and ambient temperatures under various conditions to quantify the heat-island mitigation performance of different materials according to ambient temperature.
DOCUMENT
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.