This paper presents a method and mock-up design for evaluating the heat-island mitigation effect of porous/water-retentive blocks in a climatic environmental chamber using ambient temperature measurements. To create the proposed method, the heat circulation mechanism of blocks was considered. From this, we specified the climatic chamber design requirements, determined the required components and equipment for the mock-up, and developed the proposed method for evaluating heat-island mitigation performance based on ambient temperature. Using the proposed mock-up design and method, we confirmed that both surface and air temperatures were lower when porous/water-retentive blocks were installed compared to conventional blocks. This method can be used to analyze the difference between surface and ambient temperatures under various conditions to quantify the heat-island mitigation performance of different materials according to ambient temperature.
In the Netherlands municipalities are searching for guidelines for a heat resilient design of the urban space. One of the guidelines which has recently been picked up is that each house should be within a 300 meter of an attractive cool spot outside. The reason is that houses might get too hot during a heat wave and therefor it is important that inhabitants have an alternative place to go. The distance of 300 m has been adopted because of practical reasons. This guideline has been proposed after a research of the University of Amsterdam of applied sciences and TAUW together with 15 municipalities.To help municipalities to take cool spots into account in their urban design the national organization for disseminating climate data has developed a distance to coolness map for all Dutch built up areas. This map shows the cool spots with a minimum of 200 m2 based on a map of the PET for a hot summer day (2*2 m2 spatial resolution). Furthermore the map shows the walking distance for each house (via streets and foot paths) to the nearest cool spot.This map helps as a starting point. Because not all cool spots are attractive cool spots. A research in 2021 showed what further basis and optional characteristics those cool spots should have: e.g. sufficiently large, combination of sun and shadow, benches, quiet, safe and clean. In fact those places should be attractive places to stay for most days of the year.With the distance to attractive cool spots municipalities can easily see which areas lack attractive cool spots. The distance to cool spot maps is therefore a way to simplify complex climate data into an understandable and practical guideline. This is an improvement as compared to using thresholds for temperatures and thresholds for duration of exceedance of those temperatures in a guideline.: Municipalities like this practical approach that combines climate adaptation with improving the livability of a city throughout the year.
This essay is a contribution to the research project ‘From Prevention to Resilience’ funded by ZonMw. Motivated by the Covid-19 pandemic, this research project explored how public space and forms of civic engagement can contribute to working towards more resilient urban neighborhoods. The project engaged a community of practice (CoP) to inform the research and to disseminate and critically discuss research outcomes. This essay, and the bundle it is part of, is the outcome of one of these engagements. The authors of this specific essay were asked to offer their disciplinary perspective on a first version of the Human / Non-Human Public Spaces design perspective, at that time still titled Nexus Framework on Neighborhood Resilience (click here and a PDF of this version will be downloaded). The authors were asked to do so based on their field of expertise, being climate-resilient cities. The authors have written this essay in coordination with the research team. To grasp the content of this essay and to take lessons from it, we encourage readers to first get familiar with the first version of the design perspective.
MULTIFILE
Sinds januari 2015 werken we met lector Jeroen Kluck van de Hogeschool van Amsterdam in een onderzoeksproject 'De klimaatbestendige stad' [1] dat tot doel heeft te onderzoeken hoe gemeenten wijken en straten klimaatbestendig kunnen inrichten. De focus van het onderzoek ligt op het duiden van de urgentie van hittestress, op het ontwerpen van standaard klimaatbestendige situaties en op een afweging van kosten en baten (o.a. voordelen van vergroening). Onderzoekers en studenten van de Hanze en hogeschool Amsterdam hebben in dat kader gemeten aan de hitte tijdens de hete zomer van 2015. Ook zijn er testen uitgevoerd naar diverse groen blauwe voorzieningen in het stedelijk gebied naar het lange termijn functioneren ervan. In Hoogeveen is in workshops in detail gekeken naar oplossingen in diverse straten, in de laatste stap worden de kosten gedetailleerd en concrete inrichting van groen blauwe voorzieningen vergeleken met traditionele inrichting op diverse criteria.