Peer-reviewed artikel over semantische segmentatie van point clouds.
MULTIFILE
Western cities are rapidly densifying, and new building typologies are beinginvented to mitigate high-rise and balance residential, commercial andrecreational functions. This vertical urbanization requires rethinking thetraditional design of public space to promote citizens’ well-being. While the scarce studies on high-rise environments indicate several risks, including social fragmentation and privatization of public functions (Henderson-Wilson 2008; Love et al., 2014), mental stress and undermining attention restoration (Mazumder et al., 2020; Lindal & Hartig 2013), evidence on the potential salutary and mitigating effects of architectural design qualities is limited (Suurenbroek & Spanjar 2023).The Building for Well-being research project combines biometric and socialdata-collection techniques to address this gap. It builds on studies investigatinghow built environments allow user engagement (Mallgrave 2013; Simpson2018) and afford important activities (Gibson 1966). This case study focuseson the experiences of predominant users of the NDSM Wharf in Amsterdamas it is transformed from a post-industrial site into a high-density, mixeduseneighborhood. Using eye-tracking, field and laboratory-based surveys, itexplores how residents, passers-by and visitors visually experience, appreciateand perceive the restorative value of the wharf’s recently developed urbanspaces.Thirty-six university students were randomly recruited as test subjects for thelaboratory test and assigned to one of the three user groups. The residentand passer-by groups were primed for familiarity. Each group was assigneda distinct walking mode and participants were told to imagine they werestrolling (residents), rushing (passers-by) or exploring (visitors). The exposuretime to visual stimuli of participants was five seconds per image. Afterwards,they reported on the perceived restorative quality of ten urban spaces,focusing on: (1) sense of being away, (2) level of complexity-compatibilityand (3) fascination, based on an adapted Restorative Components Scale (RCS,Yin et al. 2022; Laumann et al. 2001). Self-reported appreciation per scenewas measured on a 10-point Likert scale and subjects indicated elements inthe ten urban spaces they liked or disliked (see Figure 1). A semi-structuredon-site survey was also carried out to investigate user experiences furtherand for triangulation. Thirty-one users, consisting of residents, passers-byand visitors to the NDSM Wharf, rated their appreciation of the site and itsperceived restorative and design qualities (following Ewing & Clemente, 2013)on a 10-point Likert scale.The meta-data analysis of RCS statistics, appreciation values, eye-trackingmetrics and heatmaps reveals distinct visual patterns among user groups. Thispoints to the influence of environmental tasks and roles (see Figure 2). Strollingand exploring resulted in a comprehensive visual exploration of scenes with ahigher mean total fixation count and shorter mean total fixation duration thangoal-oriented walking. It suggests that walking mode determines the level ofopenness to the environment and that architectural attributes can also steervisual exploration. Scenes with the highest appreciation scores correlatedwith the RCS outcomes. They displayed coherence and opportunities forsocial engagement, contrasting with scenes with inconsistent industrial andcontemporary features. These findings provide spatial designers with insightsinto the subliminal experiences of predominant user groups to promote wellbeing in urban transformation.
The coronavirus pandemic highlighted the vital role urban areas play in supporting citizens’ health and well-being (Ribeiro et al., 2021). In times of (personal) vulnerability, citizens depend on their neighbourhood for performing daily physical activities to restore their mental state, but public spaces currently fall short in fulfilling the appropriate requirements to achieve this. The situation is exacerbated by Western ambitions to densify through high-rise developments to meet the housing demand. In this process of urban densification, public spaces are the carriers where global trends, local ambitions and the conditions for the social fabric materialise (Battisto & Wilhelm, 2020). High-rise developments in particular will determine users’ experiences at street-level. Consequently, they have an enduring influence on the liveability of neighbourhoods for the coming decades but, regarding the application of urban design principles, their impact is hard to dissect (Gifford, 2007).Promising emerging technologies and methods from the new transdisciplinary field of neuroarchitecture may help identify and monitor the impact of certain physical characteristics on human well-being in an evidence-based way. In the two-year Sensing Streetscapes research study, biometric tools were tested in triangulation with traditional methods of surveys and expert panels. The study unearthed situational evidence of the relationship between designed and perceived spaces by investigating the visual properties and experience of high-density environments in six major Western cities. Biometric technologies—Eye-Tracking, Galvanic Skin Response, mouse movement software and sound recording—were applied in a series of four laboratory tests (see Spanjar & Suurenbroek, 2020) and one outdoor test (see Hollander et al., 2021). The main aim was to measure the effects of applied design principles on users’ experiences, arousal levels and appreciation.Unintentionally, the research study implied the creation of a 360° built-environment assessment tool. The assessment tool enables researchers and planners to analyse (high-density) urban developments and, in particular, the architectural attributes that (subliminally) affect users’ experience, influencing their behaviour and perception of place. The tool opens new opportunities for research and planning practice to deconstruct the successes of existing high-density developments and apply the lessons learned for a more advanced, evidence-based promotion of human health and well-being.ReferencesBattisto, D., & Wilhelm, J. J. (Eds.). (2020). Architecture and Health Guiding Principles for Practice. Routledge, Taylor & Francis Group. Gifford, R. (2007). The Consequences of Living in High-Rise Buildings. Architectural Science Review, 50(1), 2–17. https://doi.org/https://doi.org/10.3763/asre.2007.5002 Hollander, J. B., Spanjar, G., Sussman, A., Suurenbroek, F., & Wang, M. (2021). Programming for the subliminal brain: biometric tools reveal architecture’s biological impact. In K. Menezes, P. de Oliveira-Smith, & A. V. Woodworth (Eds.), Programming for Health and Wellbeing in Architecture (pp. 136–149). Routledge, Taylor & Francis Group. https://doi.org/https://doi.org/10.4324/9781003164418 Ribeiro, A. I., Triguero-Mas, M., Jardim Santos, C., Gómez-Nieto, A., Cole, H., Anguelovski, I., Silva, F. M., & Baró, F. (2021). Exposure to nature and mental health outcomes during COVID-19 lockdown. A comparison between Portugal and Spain. Environment International, 154, 106664. https://doi.org/https://doi.org/10.1016/j.envint.2021.106664 Spanjar, G., & Suurenbroek, F. (2020). Eye-Tracking the City: Matching the Design of Streetscapes in High-Rise Environments with Users’ Visual Experiences. Journal of Digital Landscape Architecture (JoDLA), 5(2020), 374–385. https://gispoint.de/gisopen-paper/6344-eye-tracking-the-city-matching-the-design-of-streetscapes-in-high-rise-environments-with-users-visual-experiences.html?IDjournalTitle=6
MULTIFILE