This dissertation aims to strengthen socioscientific issues (SSI) education by focusing on the resources available to students. SSI education is a type of science and citizenship education that supports students’ informed and critical engagement with social issues that have scientific or technological dimensions. This dissertation explores students’ SSI-related resources relevant to their engagement with SSI, such as their attitudes and social resources. The dissertation consists of four papers. The first is a position paper that introduces the concept of socioscientific capital and argues why it is important to pay attention to students’ resources in SSI-based teaching. The other three papers involve empirical, quantitative studies. Two questionnaires were developed that were used to investigate student differences regarding engagement with SSI: the Pupils’ Attitudes towards Socioscientific Issues (PASSI) questionnaire and the Use of Sources of Knowledge (USK) questionnaire. The final study is an exploration of the effects of SSI-based teaching on students’ attitudes toward SSI, considering socioscientific capital.
MULTIFILE
Over the past few decades, education systems, especially in higher education, have been redefined. Such reforms inevitably require reconsideration of operational notions and definitions of quality, along with a number of related concepts. This reconsideration aligns with the core of higher education reforms: improving efficacy and compatibility with emerging social demands while adapting to competitiveness and accountability trends. As primary players in the teaching and learning process, online tutors have a protagonistic role and, therefore, must be equipped with a suitable set of competencies and attributes in addition to content knowledge. This quantitative research aims to analyze the perceptions of 250 online tutors working in European higher education institutions, distributed in 5 knowledge areas: Business, Education, Humanities, Sciences and Health. This descriptive and exploratory nonexperimental study reveals the technological and pedagogical skills and competencies that online tutors consider fundamental for effective online teaching and proposes professional development actions to ensure quality online teaching.
Objective We examined whether the role of maternal education in children's unhealthy snacking diet is moderated by other socio-economic indicators. Methods Participants were selected from the Amsterdam Born Children and their Development cohort, a large ongoing community-based birth cohort. Validated Food Frequency Questionnaires (FFQ) (n = 2782) were filled in by mothers of children aged 5.7±0.5yrs. Based on these FFQs, a snacking dietary pattern was derived using Principal Component Analysis. Socio-economic indicators were: maternal and paternal education (low, middle, high; based on the highest education completed) household finance (low, high; based on ability to save money) and neighbourhood SES (composite score including educational level, household income and employment status of residents per postal code). Cross-sectional multivariable linear regression analysis was used to assess the association and possible moderation of maternal education and other socio-economic indicators on the snacking pattern score. Analyses were adjusted for children's age, sex and ethnicity. Results Low maternal education (B 0.95, 95% CI 0.83;1.06), low paternal education (B 0.36, 95% CI 0.20;0.52), lower household finance (B 0.18, 95% CI 0.11;0.26) and neighbourhood SES (B -0.09, 95% CI -0.11;-0.06) were independently associated with higher snacking pattern scores (p<0.001). The association between maternal education and the snacking pattern score was somewhat moderated by household finance (p = 0.089) but remained strong. Children from middle-high educated mothers (B 0.44, 95% CI 0.35;0.52) had higher snacking pattern scores when household finance was low (B 0.49, 95% CI 0.33;0.65). Conclusions All socio-economic indicators were associated with increased risk of unhealthy dietary patterns in young children, with low maternal education conferring the highest risk. Yet, within the group of middle-high educated mothers, lower household finance was an extra risk factor for unhealthy dietary patterns. Intervention strategies should therefore focus on lower educated mothers and middle-high educated mothers with insufficient levels of household finance.
Manual labour is an important cornerstone in manufacturing and considering human factors and ergonomics is a crucial field of action from both social and economic perspective. Diverse approaches are available in research and practice, ranging from guidelines, ergonomic assessment sheets over to digitally supported workplace design or hardware oriented support technologies like exoskeletons. However, in the end those technologies, methods and tools put the working task in focus and just aim to make manufacturing “less bad” with reducing ergonomic loads as much as possible. The proposed project “Human Centered Smart Factories: design for wellbeing for future manufacturing” wants to overcome this conventional paradigm and considers a more proactive and future oriented perspective. The underlying vision of the project is a workplace design for wellbeing that makes labor intensive manufacturing not just less bad but aims to provide positive contributions to physiological and mental health of workers. This shall be achieved through a human centered technology approach and utilizing advanced opportunities of smart industry technologies and methods within a cyber physical system setup. Finally, the goal is to develop smart, shape-changing workstations that self-adapt to the unique and personal, physical and cognitive needs of a worker. The workstations are responsive, they interact in real time, and promote dynamic activities and varying physical exertion through understanding the context of work. Consequently, the project follows a clear interdisciplinary approach and brings together disciplines like production engineering, human interaction design, creative design techniques and social impact assessment. Developments take place in an industrial scale test bed at the University of Twente but also within an industrial manufacturing factory. Through the human centered design of adaptive workplaces, the project contributes to a more inclusive and healthier society. This has also positive effects from both national (e.g. relieve of health system) as well as individual company perspective (e.g. less costs due to worker illness, higher motivation and productivity). Even more, the proposal offers new business opportunities through selling products and/or services related to the developed approach. To tap those potentials, an appropriate utilization of the results is a key concern . The involved manufacturing company van Raam will be the prototypical implementation partner and serve as critical proof of concept partner. Given their openness, connections and broad range of processes they are also an ideal role model for further manufacturing companies. ErgoS and Ergo Design are involved as methodological/technological partners that deal with industrial engineering and ergonomic design of workplace on a daily base. Thus, they are crucial to critically reflect wider applicability and innovativeness of the developed solutions. Both companies also serve as multiplicator while utilizing promising technologies and methods in their work. Universities and universities of applied sciences utilize results through scientific publications and as base for further research. They also ensure the transfer to education as an important leverage to inspire and train future engineers towards wellbeing design of workplaces.
In an increasingly complex and rapidly changing world, traditional disciplinary approaches to the framing and resolution of social and economic problems deliver ever diminishing returns.Discussions abound, therefore, about how best to educate and prepare graduates for the fresh challenges of the 21st century.Knowledge Alliances between Higher Education Institutions (HEIs) and enterprises which aim to foster innovation, entrepreneurship, creativity, employability, knowledge exchange and/or multidisciplinary teaching and learning are therefore becoming increasingly necessary and relevant. The challenge is to determine what we should teach in the future and how it should be taught. The changing nature of contemporary society highlights that social issues are often highly complex and multifaceted.The aim of this Action is to demonstrate, through the adoption of Multi-Disciplinary Innovation (MDI) methods, how we can respond to social problems with a design-led approach which has a problem-oriented ethos, supporting positive social change and the development of international public policy discourse. It will be achieved through the establishment of a Pan-European Public Sector Innovation (ePSI) lab. It will prepare students for roles in employment by integrating education programmes into the lab’s operations and it will support agencies that have a role in responding to and developing public policy.COST action on social innovation in labs
Despite the vast potential drone technologies have, their integration to our society has been slow due to restricting regulations. Recently, a new EU-wide drone regulation has been published. This regulation is intended to harmonize the non-uniform national regulations across EU. It also relaxes the existing restrictions and allows previously prohibited operations that have significant socio-economic and technological impacts, such as autonomous BVLOS flights even over populated areas. However, there are challenges with regard to specifics and accessibilities of the required technological & procedural prerequisite this regulation entails. There is, therefore, a demand from SMEs for practical knowledge on technological and procedural aspects of a safe, robust and BVLOS operable security drone with short and long-term autonomy that fully complies to the new drone regulation. The required drone technologies include robust obstacle avoidance, intelligence failsafe for robust, reliable and safe autonomous flights with long-term autonomy capabilities. The operational procedures include SORA, pre/in/post-flight analysis and ROC/LUC permissions. In this project, these two aspects will be addressed in an integral manner. The consortium recognizes that developing such advanced security drone in two years is ambitious. Yet, they firmly believe that it is realizable due to the complementary expertise of the consortium and their commitment for the success of the project. With this project, the knowledge institutes will enrich their practical knowledge in the area of autonomous and BVLOS capable drones, operational procedures, risk analysis and mitigations. The partner companies will be equipped with the necessary technologies, operation permission and knowledge on optimal operation procedures to be at the forefront and benefit from the exploding market opportunities when the new regulation is fully implemented in July 2022. Moreover, this project will also make a demonstrable contribution to the renewal of higher professional education.