Abstract Purpose: This study aimed to assess the prevalence of low bone mineral density (BMD) in male and female elite cyclists at different stages of a professional cycling career and to identify potential risk factors of low BMD. Methods: In this cross-sectional study, 93 male and female early career, advanced career, and postcareer elite cyclists completed dual-energy x-ray absorptiometry at the hip, femoral neck, lumbar spine, and total body; blood sampling; assessment of training history and injuries; and the bone-specific physical activity questionnaire. Backward stepwise multiple regression analyses were conducted to explore associations between BMD and its potential predictors in early and advanced career (i.e., active career) cyclists. Results: With a mean Z -score of -0.3 ± 0.8, -1.5 ± 1.0, and -1.0 ± 0.9, low BMD ( Z -score < -1) at the lumbar spine was present in 27%, 64%, and 50% of the early, advanced, and postcareer elite male cyclists, respectively. Lumbar spine Z -scores of -0.9 ± 1.0, -1.0 ± 1.0, and 0.2 ± 1.4 in early, advanced, and postcareer elite female cyclists, respectively, indicated low BMD in 45%, 45%, and 20% of these female subpopulations. Regression analyses identified body mass index, fracture incidence, bone-specific physical activity, and triiodothyronine as the main factors associated with BMD. Conclusions: Low BMD is highly prevalent in elite cyclists, especially in early career females and advanced career males and females. These low BMD values may not fully recover after the professional cycling career, given the substantial prevalence of low BMD in retired elite cyclists. Exploratory analyses indicated that low BMD is associated with low body mass index, fracture incidence, lack of bone-specific physical activity, and low energy availability in active career elite cyclists.
Background: Different surgical approaches for total hip arthroplasty (THA) exist, without predisposition when it comes to dislocation risk. The direct anterior approach (DAA) is thought to have reduced risk since soft tissue trauma is minimalized. Therefore, we assessed the dislocation risk for different surgical approaches, and the relative dislocation risk of DAA compared to other approaches. Methods: Six electronic databases were systematically searched for prospective studies reporting dislocation following THA. Proportion meta-analyses were performed to assess the dislocation rate for subgroups of the surgical approach. Meta-analysis for binary outcomes was performed to determine the relative risk of dislocation for the DAA compared to other approaches. Results: Eleven studies with 2025 patients were included (mean age 64.6 years, 44% male, mean follow-up 10.5 months), of which four studies were also used in the risk ratio meta-analysis. Overall dislocation rate was 0.79% (95% CI 0.37–1.69). Subgroup analyses showed that most dislocations occurred in the posterior approaches group (1.38%), however non-significant. Furthermore, the DAA emerged with a non-significant lower risk of dislocation (RR 0.37, 95% CI 0.05–2.46) compared to other surgical approaches. Conclusion: Current literature shows non-significant predisposition for a surgical approach to THA regarding dislocation risk. To what extent patient characteristics influence the risk of dislocation could not be determined. Future research should focus on this, as well as on the influence of a surgeon's experience with a specific approach.