This study used historical data from a Park & Ride facility in Amsterdam to build a validated computer (Python) model to optimize battery and grid connection sizing. The case study modelled is equipped with 8 EV chargers (16 connections), an on-site supplementary battery, and a limited capacity grid connection. This model was then used to optimize the battery energy storage capacity and grid connection capacity for minimal annualized investment, using a future proof monthly load profile. A variety of battery control strategies were simulated using both the optimal system sizing and the current system sizing. The results were compared and a recommended control strategy presented, considering a number of performance metrics.
MULTIFILE
Purpose: This study examined the effects of a giant (4×3 m) exercising board game intervention on ambulatory physical activity (PA) and a broader array of physical and psychological outcomes among nursing home residents. Materials and methods: A quasi-experimental longitudinal study was carried out in two comparable nursing homes. Ten participants (aged 82.5±6.3 and comprising 6 women) meeting the inclusion criteria took part in the 1-month intervention in one nursing home, whereas 11 participants (aged 89.9±3.1 with 8 women) were assigned to the control group in the other nursing home. The giant exercising board game required participants to per-form strength, flexibility, balance and endurance activities. The assistance provided by an exercising specialist decreased gradually during the intervention in an autonomy-oriented approach based on the self-determination theory. The following were assessed at baseline, after the intervention and after a follow-up period of 3 months: PA (steps/day and energy expenditure/day with ActiGraph), cognitive status (mini mental state examination), quality of life (EuroQol 5-dimensions), motivation for PA (Behavioral Regulation in Exercise Questionnaire-2), gait and balance (Tinetti and Short Physical Performance Battery), functional mobility (timed up and go), and the muscular isometric strength of the lower limb muscles. Results and conclusion: In the intervention group, PA increased from 2,921 steps/day at baseline to 3,358 steps/day after the intervention (+14.9%, P=0.04) and 4,083 steps/day (+39.8%, P=0.03) after 3 months. Energy expenditure/day also increased after the intervention (+110 kcal/day, +6.3%, P=0.01) and after 3 months (+219 kcal/day, +12.3%, P=0.02). Quality of life (P<0.05), balance and gait (P<0.05), and strength of the ankle (P<0.05) were also improved after 3 months. Such improvements were not observed in the control group. The preliminary results are promising but further investigation is required to confirm and evaluate the long-term effectiveness of PA interventions in nursing homes.
DOCUMENT
Electric vehicles and renewable energy sources are collectively being developed as a synergetic implementation for smart grids. In this context, smart charging of electric vehicles and vehicle-to-grid technologies are seen as a way forward to achieve economic, technical and environmental benefits. The implementation of these technologies requires the cooperation of the end-electricity user, the electric vehicle owner, the system operator and policy makers. These stakeholders pursue different and sometime conflicting objectives. In this paper, the concept of multi-objective-techno-economic-environmental optimisation is proposed for scheduling electric vehicle charging/discharging. End user energy cost, battery degradation, grid interaction and CO2 emissions in the home micro-grid context are modelled and concurrently optimised for the first time while providing frequency regulation. The results from three case studies show that the proposed method reduces the energy cost, battery degradation, CO2 emissions and grid utilisation by 88.2%, 67%, 34% and 90% respectively, when compared to uncontrolled electric vehicle charging. Furthermore, with multiple optimal solutions, in order to achieve a 41.8% improvement in grid utilisation, the system operator needs to compensate the end electricity user and the electric vehicle owner for their incurred benefit loss of 27.34% and 9.7% respectively, to stimulate participation in energy services.
DOCUMENT
Referral to home-based cardiac rehabilitation (HBCR) is low among older and frailer patients due to low expectations regarding adherence by healthcare professionals. The aim of this study was to determine adherence to HBCR when old and frail patients are referred, and to explore any differences in baseline characteristics between adherent and nonadherent patients. Data of the Cardiac Care Bridge were used (Dutch trial register NTR6316). The study included hospitalized cardiac patients ≥ 70 years old and at high risk of functional loss. Adherence to HBCR was confirmed when two-thirds of the intended nine sessions were followed. Of the 153 patients included (age: 82 ± 6 years, 54% female), 29% could not be referred due to death before referral, not returning home, or practical problems. Of the 109 patients who were referred, 67% adhered. Characteristics associated with non-adherence were older age (84 ± 6 vs. 82 ± 6, p = 0.05) and higher handgrip strength in men (33 ± 8 vs. 25 ± 11, p = 0.01). There was no difference in comorbidity, symptoms, or physical capacity. Based on these observations, most older cardiac patients who return home after hospital admission appear to adhere to HBCR after referral, suggesting that most older cardiac patients are motivated and capable of receiving HBCR.
DOCUMENT
BackgroundCardiac rehabilitation (CR) can reduce mortality and improve physical functioning in older patients, but current programs do not support the needs of older patients with comorbidities or frailty, for example due to transport problems and physical limitations. Home-exercise-based cardiac rehabilitation (HEBCR) programs may better meet these needs, but physiotherapy guidelines for personalising HEBCR for older, frail patients with cardiovascular disease are lacking.PurposeTo provide expert recommendations for physiotherapists on how to administer HEBCR to older adults with comorbidities or frailty.MethodsThis Delphi study involved a panel of Dutch experts in physiotherapy, exercise physiology, and cardiology. Three Delphi rounds were conducted between December 2020 and February 2022. In the first round panellists provided expertise on applicability and adaptability of existing CR-guidelines. In the second round panellists ranked the importance of statements about HEBCR for older adults. In the third round panellists re-ranked statements when individual scores were outside the semi-interquartile range. Consensus was defined as a semi-interquartile range of ≤ 1.0.ResultsOf 20 invited panellists, 11 (55%) participated. Panellists were clinical experts with a median (interquartile range) work experience of 20 (10.5) years. The panel reached a consensus on 89% of statements, identifying key topics such as implementing the patient perspective, assessing comorbidity and frailty barriers to exercise, and focusing on personal goals and preferences.ConclusionThis Delphi study provides recommendations for personalised HEBCR for older, frail patients with cardiovascular disease, which can improve the effectiveness of CR-programs and address the needs of this patient population. Prioritising interventions aimed at enhancing balance, lower extremity strength, and daily activities over interventions targeting exercise capacity may contribute to a more holistic and effective approach, particularly for older adults.
DOCUMENT
Background: According to the principles of Reablement, home care services are meant to be goal-oriented, holistic and person-centred taking into account the capabilities and opportunities of older adults. However, home care services traditionally focus on doing things for older adults rather than with them. To implement Reablement in practice, the ‘Stay Active at Home’ programme was developed. It is assumed that the programme leads to a reduction in sedentary behaviour in older adults and consequently more cost-effective outcomes in terms of their health and wellbeing. However, this has yet to be proven. Methods/ design: A two-group cluster randomised controlled trial with 12 months follow-up will be conducted. Ten nursing teams will be selected, pre-stratified on working area and randomised into an intervention group (‘Stay Active at Home’) or control group (no training). All nurses of the participating teams are eligible to participate in the study. Older adults and, if applicable, their domestic support workers (DSWs) will be allocated to the intervention or control group as well, based on the allocation of the nursing team. Older adults are eligible to participate, if they: 1) receive homecare services by the selected teams; and 2) are 65 years or older. Older adults will be excluded if they: 1) are terminally ill or bedbound; 2) have serious cognitive or psychological problems; or 3) are unable to communicate in Dutch. DSWs are eligible to participate if they provide services to clients who fulfil the eligibility criteria for older adults. The study consists of an effect evaluation (primary outcome: sedentary behaviour in older adults), an economic evaluation and a process evaluation. Data for the effect and economic evaluation will be collected at baseline and 6 and/or 12 months after baseline using performance-based and self-reported measures. In addition, data from client records will be extracted. A mixed-methods design will be applied for the process evaluation, collecting data of older adults and professionals throughout the study period. Discussion: This study will result in evidence about the effectiveness, cost-effectiveness and feasibility of the ‘Stay Active at Home’ programme.
DOCUMENT
The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery until a full battery of the EVs based on realworld data needs to be analyzed. Many researchers currently view this charging profile as a static load and ignore the actual charging behavior during the charging session. This study investigates how different factors influence the charging profile of individual EVs based on real-world data of charging sessionsin the Netherlands, enabling optimization analysis of EV smart charging schemes.
DOCUMENT
The Johan Cruijff ArenA (JC ArenA) is a big events location in Amsterdam, where national and international football matches, concerts and music festivals take place for up to 68,000 visitors. The JC ArenA is already one of the most sustainable, multi-functional stadia in the world and is realizing even more inspiring smart energy solutions for the venue, it’s visitors and neighbourhood. The JC ArenA presents a complex testbed for innovative energy services, with a consumption of electricity comparable to a district of 2700 households. Thanks to the 1 MWp solar installation on the roof of the venue, the JC ArenA already produces around 8% of the electricity it needs, the rest is by certified regional wind energy.Within the Seev4-City project the JC ArenA has invested in a 3 MW/2.8 MWh battery energy storage system, 14 EV charging stations and one V2G charging unit. The plan was to construct the 2.8 MWh battery with 148 2nd life electric car batteries, but at the moment of realisation there were not enough 2nd life EV batteries available, so 40% is 2nd life. The JC ArenA experienced compatibility issues installing a mix of new and second-life batteries. Balancing the second-life batteries with the new batteries proved far more difficult than expected because an older battery is acting different compared to new batteries.The EV-based battery energy storage system is unique in that it combines for the first time several applications and services in parallel. Main use is for grid services like Frequency Containment Reserve, along with peak shaving, back-up services, V2G support and optimization of PV integration. By integrating the solar panels, the energy storage system and the (bi-directional) EV chargers electric vehicles can power events and be charged with clean energy through the JC ArenA’s Energy Services. These and other experiences and results can serve as a development model for other stadiums worldwide and for use of 2nd life EV batteries.The results of the Seev4-City project are also given in three Key Performance Indicators (KPI): reduction of CO2-emission, increase of energy autonomy and reduction in peak demand. The results for the JC ArenA are summarised in the table below. The year 2017 is taken as reference, as most data is available for this year. The CO2 reductions are far above target thanks to the use of the battery energy storage system for FCR services, as this saves on the use of fossil energy by fossil power plants. Some smaller savings are by replacement of ICEby EV. Energy autonomy is increased by better spreading of the PV generated, over 6 instead of 4 of the 10 transformers of the JC ArenA, so less PV is going to the public grid. A peak reduction of 0.3 MW (10%) is possible by optimal use of the battery energy storage system during the main events with the highest electricity demand.
DOCUMENT