Hop tests are frequently used to determine return to sports (RTS) after anterior cruciate ligament reconstruction (ACLR). Given that bilateral deficits are present after ACLR, this may result in a falsely high limb symmetry index (LSI), since LSI is calculated as a ratio between the values of the limbs.HypothesisAthletes after ACLR would achieve LSI > 90% for the hop test. Secondly, athletes after ACLR demonstrate decreased jump distance on the single hop for distance (SLH) and triple leg hop for distance (TLH) and decreased number of hops for the side hop (SH) for both involved and uninvolved limbs compared to normative data of sex, age and type of sports matched healthy athletes.Materials and MethodsFifty-two patients (38 males mean age 23.9 ±3.5 yrs; 14 females mean age 21.7±3.5 years) who had undergone an ACLR participated in this study. Patients performed the 3 hop tests at a mean time of 7.0 months after ACLR. Hop distance, number of side hops and LSI were compared with normative data of 188 healthy athletes.ResultsThe differences between the involved limb and the uninvolved limb were significant in all hop tests (SLH p=0.003, TLH p=0.003 , SH p=0.018). For females, only significant between limb differences were found in the SLH (p=0.049). For both the SLH and the TLH, significant differences were found between the involved limb and the normative data (males; SLH p<0.001, TLH p<0.001; females; SLH p<0.001, TLH p=0.006) and between the uninvolved limb and the normative data for both males and females (males; SLH p<0.001, TLH p<0.001; females; SLH p=0.003, TLH p=0.038). For the SH, only significant differences were found between the involved limb and the normative values in males (p=0.033).ConclusionAthletes who have undergone an ACLR demonstrate bilateral deficits on hop tests in comparison to age and sex matched normative data of healthy controls. Using the LSI may underestimate performance deficits and should therefore be analyzed with caution when used as a criterion for RTS after ACLR.
DOCUMENT
DOCUMENT
BACKGROUND: A limited number of patients return to sport (RTS) after an anterior cruciate ligament reconstruction (ACLR) and patients who RTS have a relatively high risk for second ACL injury. The purpose of the current study was to compare the results of a test battery between patients who returned to the pre-injury level of sport (RTS group) and patients who did not (NO-RTS group). It was hypothesized that the RTS group showed better test results.METHODS: Sixty-four patients (age 27.8 ± 8.8 years) were included. The results of a multicomponent test battery (jump-landing task assessed with the Landing Error Scoring System (LESS), three hop tests, isokinetic strength test for quadriceps and hamstring) were compared between groups with a 2 × 2 ANOVA.RESULTS: The RTS group showed a significantly lower LESS score (p = 0.010), significantly higher absolute scores on hop tests with both legs (injured leg: single leg hop test p = 0.013, triple leg hop test p = 0.024, side hop test p = 0.021; non-injured leg: single leg hop test p = 0.011, triple leg hop test p = 0.023, side hop test p = 0.032) and significantly greater hamstring strength in the injured leg (p = 0.009 at 60°/s, p = 0.012 at 180°/s and p = 0.013 at 300°/s). No differences in test results were identified between patients who sustained a second ACL injury and patients who did not.CONCLUSION: Patients after ACLR with better jump-landing patterns, hop performance and greater hamstring strength have greater likelihood for RTS. However, our findings show that RTS criteria fail to identify patients who are at risk for a second ACL injury.
DOCUMENT
De fashion-industrie is in transitie, nu consumenten steeds meer online zoeken, kopen en communiceren. De meeste retailers hebben inmiddels een webshop gerealiseerd, maar inzicht ontbreekt hoe de fysieke winkel levensvatbaar te maken en houden. Dit betekent in de praktijk dat lastig is om fysieke winkels open te houden hetgeen in veel steden leidt tot teloorgang van winkelstraten en –gebieden. Ook hebben retailers onvoldoende handvatten om de omni-channel consument goed te herkennen en te benaderen en de verschillende kanalen goed op elkaar te laten aansluiten. Veel retailers hebben behoefte aan goede informatie op de winkelvloer over producten en klanten. Graag zouden ze snel willen weten wat consumenten in het verleden hebben gekocht, of ze de nieuwsbrief ontvangen, welke producten er online of in andere filialen nog beschikbaar zijn. Daar kan in een verkoopgesprek op worden ingespeeld. De technologische oplossingen zijn daarvoor beschikbaar, maar deze worden nog maar mondjesmaat gebruikt. Daar waar ze wel beschikbaar zijn, weten medewerkers niet altijd goed hoe ze bijvoorbeeld een medewerkersapp optimaal gebruiken en maken consumenten weinig gebruik van bijvoorbeeld loyalty apps op hun smartphone. Daarnaast bestaat er bij veel retailers wel de wil om te innoveren, maar moeten er eerst barrières worden beslecht. De beschikbare technologie moet zich liefst al in een testsituatie hebben bewezen en men heeft behoefte aan praktische handvatten hoe de technologie optimaal in te zetten. Om tot innovatie in de branche te komen is het daarom nodig om in samenwerking met enkele innovatieve retailers, technologiebedrijven en kennisinstellingen de innovatie markt-fähig te maken. Dit project heeft als doel om een bijdrage te leveren aan de duurzaamheid van de fashion-industrie door relevante klanttechnologie geschikt te maken voor marktintroductie, alsmede de toegevoegde waarde van deze technologie te onderzoeken voor de branche.
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
Pre-eclampsia (PE) is a common and severe pregnancy complication and is associated with substantial perinatal morbidity and mortality in mothers and infants. The disease is often characterized by a non-specific presentation which makes it challenging for physician to diagnose PE during regular pregnancy check-ups. To date, there are no diagnostic tests on the market for detection of PE early in pregnancy (first trimester). In this project, we will develop a platform to sensitively analyse calcium-binding proteins (CBPs) which will unlock the full potential of CBPs as predictive PE markers. The technology will also be applicable for other diseases (e.g., dementia and cancer) where CBPs are also known to play a key role in disease pathophysiology. We will develop with phage display antibodies that can recognize calcium binding to specific motifs in proteins. To this end we will synthesize peptide motifs with and without calcium to select antibodies that are specific for calcium bound proteins. These antibodies will be validated for their clinical use. For this goal we will use serum samples from the Improved studie (EU subsidised study) to determine if we can recognize pre-eclampsia in a very early stage. This knowledge can lead to a better treatment of pregnant women suffering from this disease and also will probably increase the well-being for the baby born and the development further in life.