This study aims to help professionals in the field of running and running-related technology (i.e., sports watches and smartphone applications) to address the needs of runners. It investigates the various runner types—in terms of their attitudes, interests, and opinions (AIOs) with regard to running—and studies how they differ in the technology they use. Data used in this study were drawn from the standardized online Eindhoven Running Survey 2016 (ERS2016). In total, 3723 participants completed the questionnaire. Principal component analysis and cluster analysis were used to identify the different running types, and crosstabs obtained insights into the use of technology between different typologies. Based on the AIOs, four distinct runner types were identified: casual individual, social competitive, individual competitive, and devoted runners. Subsequently, we related the types to their use of sports watches and apps. Our results show a difference in the kinds of technology used by different runner types. Differentiation between types of runners can be useful for health professionals, policymakers involved in public health, engineers, and trainers or coaches to adapt their services to specific segments, in order to make use of the full potential of running-related systems to support runners to stay active and injury-free and contribute to a healthy lifestyle.
In this article, we calculate the economic impact of pilgrimage to Santiago de Compostela in the NUTS 2 region Galicia (Spain) in 2010. This economic impact is relevant to policymakers and other stakeholders dealing with religious tourism in Galicia. The analysis is based on the Input-Output model. Location Quotient formulas are used to derive the regional Input-Output table from the national Input-Output table of Spain. Both the Simple Location Quotient formula and Flegg's Location Quotient formula are applied. Furthermore, a sensitivity analysis is carried out. We found that pilgrimage expenditures in 2010 created between 59.750 million and 99.575 million in Gross Value Added and between 1, 362 and 2, 162 jobs. Most of the impact is generated within the 'Retail and Travel Services' industry, but also the 'Industry and Manufacturing', 'Services' and 'Financial and Real Estate Services' industries benefit from pilgrimage expenditures. This research indicates that in even in the most conservative scenario, the impact of pilgrimage is significant on the local economy of Galicia.
MULTIFILE
BACKGROUND: Ambulatory children with Spina Bifida (SB) often show a decline in physical activity leading to deconditioning and functional decline. Therefore, assessment and promotion of physical activity is important. Because energy expenditure during activities is higher in these children, the use of existing pediatric equations to predict physical activity energy expenditure (PAEE) may not be valid. AIMS: (1) To evaluate criterion validity of existing predictions converting accelerocounts into PAEE in ambulatory children with SB and (2) to establish new disease-specific equations for PAEE. METHODS: Simultaneous measurements using the Actical, the Actiheart, and indirect calorimetry took place to determine PAEE in 26 ambulatory children with SB. DATA ANALYSIS: Paired T-tests, Intra-class correlations limits of agreement (LoA), and explained variance (R2) were used to analyze validity of the prediction equations using true PAEE as criterion. New equations were derived using regression techniques. RESULTS: While T-tests showed no significant differences for some models, the predictions developed in healthy children showed moderate ICC’s and large LoA with true PAEE. The best regression models to predict PAEE were: PAEE = 174.049 + 3.861 × HRAR – 60.285 × ambulatory status (R2 = 0.720) and PAEE = 220.484 + 0.67 × Actical counts – 60.717 × ambulatory status (R2 = 0.681). CONCLUSIONS: Existing equations to predict PAEE are not valid for use in children with SB for the individual evaluation of PAEE. The best regression model was based on HRAR in combination with ambulatory status, followed by a new model for the Actical monitor. A benefit of HRAR is that it does not require the use of expensive accelerometry equipment. Further cross-validation of these models is still needed.