Hybrid Energy Storage System (HESS) have the potential to offer better flexibility to a grid than any single energy storage solution. However, sizing a HESS is challenging, as the required capacity, power and ramp rates for a given application are difficult to derive. This paper proposes a method for splitting a given load profile into several storage technology independent sub-profiles, such that each of the sub-profiles leads to its own requirements. This method can be used to gain preliminary insight into HESS requirements before a choice is made for specific storage technologies. To test the method, a household case is investigated using the derived methodology, and storage requirements are found, which can then be used to derive concrete storage technologies for the HESS of the household. Adding a HESS to the household case reduces the maximum import power from the connected grid by approximately 7000 W and the maximum exported power to the connected grid by approximately 1000 W. It is concluded that the method is particularly suitable for data sets with a high granularity and many data points.
MULTIFILE
In PowerMatching City, the leading Dutch smart grid project, 40 households participated in a field laboratory designed for sustainable living. The participating households were equipped with various decentralized energy sources (PV and micro combined heat-power units), hybrid heat pumps, smart appliances, smart meters, and an in-home display. Stabilization and optimization of the network was realized by trading energy on the market. To reduce peak loads on the smart grid and to be able to make optimal use of the decentralized energy sources, two energy services were developed jointly with the end users: Smart Cost Savings enabled users to keep the costs of energy consumption as low as possible, and Sustainable Together enabled them to become a sustainable community. Furthermore, devices could be controlled automatically, smartly, or manually to optimize the energy use of the households. Quantitative and qualitative studies were conducted to provide insight into the experiences and behaviours of end users. In this chapter, these experiences and behaviours are described. The chapter argues that end users: (1) prefer to consume self-produced energy, even when it is not the most efficient strategy to follow, (2) prefer feedback on costs over feedback on sustainability, and (3) prefer automatic and smart control, even though manual control of appliances felt most rewarding. Furthermore, we found that experiences and behaviours were fully dependent on trust between community members, and on trust in both technology (ICT infrastructure and connected appliances) and the participating parties.
LINK
In this research, the experiences and behaviors of end-users in a smart grid project are explored. In PowerMatching City, the leading Dutch smart grid project, 40 households were equipped with various decentralized energy sources (PV and microCHP), hybrid heat pumps, smart appliances, smart meters and an in-home display. Stabilization and optimization of the network was realized by trading energy on the market. To reduce peak loads on the smart grid, several types of demand side management were tested. Households received feedback on their energy use either based on costs, or on the percentage of consumed energy that had been produced locally. Furthermore, devices could be controlled automatically, smartly or manually to optimize the energy use of the households. Results from quantitative and qualitative research showed that: (1) feedback on costs reduction is valued most; (2) end-users preferred to consume self-produced energy (this may even be the case when, from a cost or sustainability perspective, it is not the most efficient strategy to follow); (3) automatic and smart control are most popular, but manually controlling appliances is more rewarding; (4) experiences and behaviors of end-users depended on trust between community members, and on trust in both technology (ICT infrastructure and connected appliances) and the participating parties.