This paper proposes a Hybrid Microgrid (HμG) model including distributed generation (DG) and a hydrogen-based storage system, controlled through a tailored control strategy. The HμG is composed of three DG units, two of them supplied by solar and wind sources, and the latter one based on the exploitation of theProton Exchange Membrane (PEM) technology. Furthermore, the system includes an alkaline electrolyser, which is used as a responsive load to balance the excess of Variable Renewable Energy Sources (VRES) production, and to produce the hydrogen that will be stored into the hydrogen tank and that will be used to supply the fuel cell in case of lack of generation. The main objectives of this work are to present a validated dynamic model for every component of the HμG and to provide a strategy to reduce as much as possible the power absorption from the grid by exploiting the VRES production. The alkaline electrolyser and PEM fuel cell models are validated through real measurements. The State of Charge (SoC) of the hydrogen tank is adjusted through an adaptive scheme. Furthermore, the designed supervisor power control allows reducing the power exchange and improving the system stability. Finally, a case, considering a summer load profile measured in an electrical substation of Politecnico di Torino, is presented. The results demonstrates the advantages of a hydrogen-based micro-grid, where the hydrogen is used as medium to store the energy produced by photovoltaic and wind systems, with the aim to improve the self-sufficiency of the system
MULTIFILE
Samen leren, werken en innoveren: dat is de kern van een hybride leeromgeving. Wat is nu een hybride leeromgeving, en waar moet je rekening mee houden bij de inrichting en ontwikkeling ervan? In deze kennissynthese bundelen we verschillende inzichten uit onderzoek en bieden we concrete handvatten voor de praktijk.
MULTIFILE
In het middelbaar beroepsonderwijs worden hybride leeromgevingen, waarin de contexten van school en werk worden geïntegreerd, gezien als een veelbelovende manier om onderwijs en praktijk beter op elkaar aan te laten sluiten. Er is weinig bekend over het duurzaam ontwerpen van deze integratieve leeromgevingen binnen een mbo-instelling als geheel, waarbij het gaat om leeromgevingen van verschillende sectoren. In deze meervoudige, tweejarige case study zijn 45 integratieve leeromgevingen op de grens van school en werk, verspreid over zes sectoren binnen één onderwijsinstelling in kaart gebracht. Deze leeromgevingen zijn in focusgroepen geanalyseerd op 1) waar zij zich bevinden op de dimensie school-werk, 2) de ontwerpkenmerken inhoudelijk, sociaal, temporeel, instrumenteel en ruimtelijk, en 3) bevorderende en belemmerende factoren bij het ontwerpen en uitvoeren van integratieve leeromgevingen. Dit onderzoek geeft inzicht in hoe deze leeromgevingen zijn ontworpen en welke factoren daarbij van belang zijn. Integratief samenwerken met het werkveld blijkt in alle sectoren mogelijk. De ontwerpkenmerken inhoudelijk, sociaal en ruimtelijk worden vaker als integratief ervaren dan het ontwerpkenmerk temporeel. Vanuit het temporele perspectief blijken vooral kaders van school leidend en komen daarmee naar voren als een belangrijke factor in het succesvol opschalen en verduurzamen van leeromgevingen.
MULTIFILE