BACKGROUND: Prednisolone and other glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressive drugs. However, prolonged use at a medium or high dose is hampered by side effects of which the metabolic side effects are most evident. Relatively little is known about their effect on gene-expression in vivo, the effect on cell subpopulations and the relation to the efficacy and side effects of GCs.AIM: To identify and compare prednisolone-induced gene signatures in CD4⁺ T lymphocytes and CD14⁺ monocytes derived from healthy volunteers and to link these signatures to underlying biological pathways involved in metabolic adverse effects.MATERIALS & METHODS: Whole-genome expression profiling was performed on CD4⁺ T lymphocytes and CD14⁺ monocytes derived from healthy volunteers treated with prednisolone. Text-mining analyses was used to link genes to pathways involved in metabolic adverse events.RESULTS: Induction of gene-expression was much stronger in CD4⁺ T lymphocytes than in CD14⁺ monocytes with respect to fold changes, but the number of truly cell-specific genes where a strong prednisolone effect in one cell type was accompanied by a total lack of prednisolone effect in the other cell type, was relatively low. Subsequently, a large set of genes was identified with a strong link to metabolic processes, for some of which the association with GCs is novel.CONCLUSION: The identified gene signatures provide new starting points for further study into GC-induced transcriptional regulation in vivo and the mechanisms underlying GC-mediated metabolic side effects.
Skeletal muscle-related symptoms are common in both acute coronavirus disease (Covid)-19 and post-acute sequelae of Covid-19 (PASC). In this narrative review, we discuss cellular and molecular pathways that are affected and consider these in regard to skeletal muscle involvement in other conditions, such as acute respiratory distress syndrome, critical illness myopathy, and post-viral fatigue syndrome. Patients with severe Covid-19 and PASC suffer from skeletal muscle weakness and exercise intolerance. Histological sections present muscle fibre atrophy, metabolic alterations, and immune cell infiltration. Contributing factors to weakness and fatigue in patients with severe Covid-19 include systemic inflammation, disuse, hypoxaemia, and malnutrition. These factors also contribute to post-intensive care unit (ICU) syndrome and ICU-acquired weakness and likely explain a substantial part of Covid-19-acquired weakness. The skeletal muscle weakness and exercise intolerance associated with PASC are more obscure. Direct severe acute respiratory syndrome coronavirus (SARS-CoV)-2 viral infiltration into skeletal muscle or an aberrant immune system likely contribute. Similarities between skeletal muscle alterations in PASC and chronic fatigue syndrome deserve further study. Both SARS-CoV-2-specific factors and generic consequences of acute disease likely underlie the observed skeletal muscle alterations in both acute Covid-19 and PASC.
Fingerprints are widely used in forensic science for individualization purposes. However, not every fingermark found at a crime scene is suitable for comparison, for instance due to distortion of ridge detail, or when the reference fingerprint is not in the database. To still retrieve information from these fingermarks, several studies have been initiated into the chemical composition of fingermarks, which is believed to be influenced by several donor traits. Yet, it is still unclear what donor information can be retrieved from the composition of one's fingerprint, mainly because of limited sample sizes and the focus on analytical method development. It this paper, we analyzed the chemical composition of 1852 fingerprints, donated by 463 donors during the Dutch music festival Lowlands in 2016. In a targeted approach we compared amino acid and lipid profiles obtained from different types of fingerprints. We found a large inter-variability in both amino acid and lipid content, and significant differences in L-(iso)leucine, L-phenylalanine and palmitoleic acid levels between male and female donors. In an untargeted approach we used full-scan MS data to generate classification models to predict gender (77.9% accuracy) and smoking habit (90.4% accuracy) of fingerprint donors. In the latter, putatively, nicotine and cotinine are used as predictors.
MULTIFILE