Aims: Prescribing errors among junior doctors are common in clinical practice because many lack prescribing competence after graduation. This is in part due to inadequate education in clinical pharmacology and therapeutics (CP&T) in the undergraduate medical curriculum. To support CP&T education, it is important to determine which drugs medical undergraduates should be able to prescribe safely and effectively without direct supervision by the time they graduate. Currently, there is no such list with broad-based consensus. Therefore, the aim was to reach consensus on a list of essential drugs for undergraduate medical education in the Netherlands. Methods: A two-round modified Delphi study was conducted among pharmacists, medical specialists, junior doctors and pharmacotherapy teachers from all eight Dutch academic hospitals. Participants were asked to indicate whether it was essential that medical graduates could prescribe specific drugs included on a preliminary list. Drugs for which ≥80% of all respondents agreed or strongly agreed were included in the final list. Results: In all, 42 (65%) participants completed the two Delphi rounds. A total of 132 drugs (39%) from the preliminary list and two (3%) newly proposed drugs were included. Conclusions: This is the first Delphi consensus study to identify the drugs that Dutch junior doctors should be able to prescribe safely and effectively without direct supervision. This list can be used to harmonize and support the teaching and assessment of CP&T. Moreover, this study shows that a Delphi method is suitable to reach consensus on such a list, and could be used for a European list.
MULTIFILE
Rational prescribing is essential for the quality of health care. However, many final-year medical students and junior doctors lack prescribing competence to perform this task. The availability of a list of medicines that a junior doctor working in Europe should be able to independently prescribe safely and effectively without supervision could support and harmonize teaching and training in clinical pharmacology and therapeutics (CPT) in Europe. Therefore, our aim was to achieve consensus on such a list of medicines that are widely accessible in Europe. For this, we used a modified Delphi study method consisting of three parts. In part one, we created an initial list based on a literature search. In part two, a group of 64 coordinators in CPT education, selected via the Network of Teachers in Pharmacotherapy of the European Association for Clinical Pharmacology and Therapeutics, evaluated the accessibility of each medicine in his or her country, and provided a diverse group of experts willing to participate in the Delphi part. In part three, 463 experts from 24 European countries were invited to participate in a 2-round Delphi study. In total, 187 experts (40%) from 24 countries completed both rounds and evaluated 416 medicines, 98 of which were included in the final list. The top three Anatomical Therapeutic Chemical code groups were (1) cardiovascular system (n = 23), (2) anti-infective (n = 21), and (3) musculoskeletal system (n = 11). This European List of Key Medicines for Medical Education could be a starting point for country-specific lists and could be used for the training and assessment of CPT.
DOCUMENT
BACKGROUND: Prednisolone and other glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressive drugs. However, prolonged use at a medium or high dose is hampered by side effects of which the metabolic side effects are most evident. Relatively little is known about their effect on gene-expression in vivo, the effect on cell subpopulations and the relation to the efficacy and side effects of GCs.AIM: To identify and compare prednisolone-induced gene signatures in CD4⁺ T lymphocytes and CD14⁺ monocytes derived from healthy volunteers and to link these signatures to underlying biological pathways involved in metabolic adverse effects.MATERIALS & METHODS: Whole-genome expression profiling was performed on CD4⁺ T lymphocytes and CD14⁺ monocytes derived from healthy volunteers treated with prednisolone. Text-mining analyses was used to link genes to pathways involved in metabolic adverse events.RESULTS: Induction of gene-expression was much stronger in CD4⁺ T lymphocytes than in CD14⁺ monocytes with respect to fold changes, but the number of truly cell-specific genes where a strong prednisolone effect in one cell type was accompanied by a total lack of prednisolone effect in the other cell type, was relatively low. Subsequently, a large set of genes was identified with a strong link to metabolic processes, for some of which the association with GCs is novel.CONCLUSION: The identified gene signatures provide new starting points for further study into GC-induced transcriptional regulation in vivo and the mechanisms underlying GC-mediated metabolic side effects.
DOCUMENT