The amino acid profile obtained from a fingerprint may provide valuable information on its donor. Unfortunately, the collection of chemicals from the fingerprint is often destructive to the fingerprint ridge detail. Herein we detail the use of cross-linkable solutions of dextran-methacrylate to form hydrogels capable of collecting amino acids from surfaces followed by extraction and quantification with UPLC-MS. This method allows for the amino acid profile analysis of fingerprints while allowing for their increased visualization at a later stage using the standard method of cyanoacrylate fuming followed by basic-yellow dyeing.
DOCUMENT
Multi-layer cell constructs produced in vitro are an innovative treatment option to support the growing demand for therapy in regenerative medicine. Our research introduces a novel construct integrating organ-derived decellularised extracellular matrix (dECM) hydrogels and 3D-printed biodegradable polymer meshes composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) to support and maintain multiple layers of different cell types. We achieved that by integrating the mechanical stability of PHBV+P34HB, commonly used in the food storage industry, with a dECM hydrogel, which replicates organ stiffness and supports cellular survival and function. The construct was customised by adjusting the fibre arrangement and pore sizes, making it a suitable candidate for a personalised design. We showed that the polymer is degradable after precoating it with PHB depolymerase (PhaZ), with complete degradation achieved in 3–5 days and delayed by adding the hydrogel to 10 days, enabling tuneable degradation for regenerative medicine applications. Finally, as a proof of concept, we composed a three-layered tissue in vitro; each layer represented a different tissue type: epidermal, vascular, and subcutaneous layers. Possible future applications include wound healing and diabetic ulcer paths, personalised drug delivery systems, and personalised tissue implants.
LINK
In de zomer van 2005 drongen Amerikaanse wetenschappers aan op de ontwikkeling van een nationale strategie op het terrein van materials science & engineering (MSE). De National Research Council (NRC) van de National Academy of Sciences (NAS) had kort aarvoor het rapport ’Globalization of Materials R&D: Time for a National Strategy’ uitgebracht. In dit rapport ging het om een antwoord op de vraag ‘Waar staan de VS in vergelijking met de rest van wereld?’, ofwel ‘Zijn de VS nog steeds leidend op de verschillende materiaalgebieden of nemen andere landen deze positie over?’ De snelle opkomst van het materialenonderzoek in landen, zoals China en het groeiend onderzoek in Europa vormen immers voor de VS een geduchtere concurrentie dan ooit. Volgens dit rapport is de positie in composieten en superlegeringen dan ook zodanig afgenomen dat Amerika nog nauwelijks de vruchten kan plukken van de elbelovende ontwikkelingen op dit terrein. Ook de positie op het gebied van katalysatoren is vrijwel geheel verdwenen. Vaak is de kennis nog wel aanwezig maar de kracht om die kennis commercieel te benutten ontbreekt. Bedrijven kunnen dan de academische kennis niet meer omzetten in een winstgevende toepassing. Hoewel het vakgebied materials science & engineering in de VS niet meer over de hele linie aan de top van de wereld staat, is de Amerikaanse positie op de meeste terreinen van de materiaalwetenschappen onbetwist. Recente hoogtepunten zijn ruimschoots voorhanden, zoals het maken van grafeen, de verschillende toepassingen van anokoolstofbuisjes, de ontdekking van metamaterialen en het nabootsen van verschijnselen uit de natuur zoals de hechting van de poten van de gekko aan de ondergrond. De National Science Foundation speelt een belangrijke bij de financiering en valorisatie van onderzoek. Verschillende programma’s, waaronder het Materials Science Research and Engineering Centers programma, spelen een grote rol in kennisoverdracht naar bedrijfsleven en maatschappij. Michiel Scheffer is, tijdens zijn vijf maanden verblijf, in de Verenigde Staten zelf op zoek gegaan naar de Amerikaanse positie en heeft met veel onderzoekers gesproken. Ook hij heeft ontdekt dat er nog vele hoogtepunten en sterkten in het Amerikaanse materialenonderzoek te vinden zijn, waarvan hij in deze bundel enthousiast en gedetailleerd verslag doet.
MULTIFILE
pH-sensitive gels: By using a cyclohexane-based scaffold to which various amino acid based substituents can be connected, low-molecular-weight compounds were obtained that can gelate water at very low concentrations. Their modular design (see picture: AA = amino acid(s), X = hydrophilic substituent, dark purple = hydrophobic region, light purple = hydrophilic region), allows tuning of the thermally and pH-induced reversible gel-to-sol transition of their gels.
DOCUMENT
This report was produced within the framework of the RAAK PRP project ‘Veiligheid op de werkvloer’. Personal protective equipment (PPE) is used on a daily basis by millions of people all over the EU, voluntarily or as a result of EU legislation. In this report we deal specifically with the textile/garment aspects of PPE. In this context we must consider the fact that PPE encompasses a huge area with hundreds of different applications of materials and systems tuned to specific needs;from a materials point of view it represents a complex area due to the large diversity of labour conditions. Textiles and clothing represent an area where PPE is an important area of attention. On a global scale it is an area of much research. Safety and comfort are becoming more and more important and these aspects must be in balance. Uncomfortable systems will not be used and put safe working at risk. Thus there is a continuous need for technological innovation to improve the effectiveness of PPE systems. Specialization and specific combinations aimed at use under well-defined conditions contributes to finding a good balance between comfort and safety. The design of products, taking into account the individual needs represent an area of intensive research: Safety directed ‘fashion design’.The ultimate goal is the development of proactive systems by which workers (but capital goods as well) are optimally protected. There is also a lot of attention for maintenance and cleaning since protective functions may deteriorate as a result of cleaning processes. Another important point is standardization because producers need directions for product development and supply of goods. In our overview we make a distinction between static and dynamic systems. Static systems provide passive protection, simply by being a part of an equipment that separates the worker from the danger zone. Dynamic systems are more ‘intelligent’ because these can react to stimuli and subsequently can take action. These dynamic systems use sensors, communication technology and actuators. From this research the following may be concluded: 1. Safety is obtained by choice of materials for a textile construction, including the use of coatings with special properties, application of specific additives and he use of special designed fibre shapes. 2. The architecture and ultimate construction and the combinations with other materials result in products that respond adequately. This is of great importance because of the balance comfort – safety. But a lot can be improved in this respect. 3. Insight in human behaviour, ambient intelligence and systems technology will lead to new routes for product development and a more active approach and higher levels of safety on the work floor. Consequently there is a lot of research going on that is aimed at improved materials and systems. Also due to the enormous research area of smart textiles a lot of development is aimed at the integration of new technology for application in PPE. This results in complex products that enhance both passive and active safety. Especially the commissioners, government and industry, must pay a lot of attention to specifying the required properties that a product should meet under the specific conditions. This has a cost aspect as well because production volumes are usually not that large if for small groups of products specific demands are defined. We expect that through the technology that is being developed in the scope of mass customization production technologies will be developed that allows production at acceptable cost, but still aimed at products that have specific properties for unique application areas. Purchasing is now being practiced through large procurements. We must than consider the fact that specification takes place on the basis of functionality. In that case we should move away from the current cost focus but the attention should shift towards the life cycle
MULTIFILE
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NMon ILCs and other components of the serosal immune systemare scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NMmay lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NMon the serosal immune system.
DOCUMENT
Fingerprints are widely used in forensic science for individualization purposes. However, not every fingermark found at a crime scene is suitable for comparison, for instance due to distortion of ridge detail, or when the reference fingerprint is not in the database. To still retrieve information from these fingermarks, several studies have been initiated into the chemical composition of fingermarks, which is believed to be influenced by several donor traits. Yet, it is still unclear what donor information can be retrieved from the composition of one's fingerprint, mainly because of limited sample sizes and the focus on analytical method development. It this paper, we analyzed the chemical composition of 1852 fingerprints, donated by 463 donors during the Dutch music festival Lowlands in 2016. In a targeted approach we compared amino acid and lipid profiles obtained from different types of fingerprints. We found a large inter-variability in both amino acid and lipid content, and significant differences in L-(iso)leucine, L-phenylalanine and palmitoleic acid levels between male and female donors. In an untargeted approach we used full-scan MS data to generate classification models to predict gender (77.9% accuracy) and smoking habit (90.4% accuracy) of fingerprint donors. In the latter, putatively, nicotine and cotinine are used as predictors.
MULTIFILE
The transition to a biobased economy necessitates utilizing renewable resources as a sustainable alternative to traditional fossil fuels. Bioconversion is a way to produce many green chemicals from renewables, e.g., biopolymers like PHAs. However, fermentation and bioconversion processes mostly rely on expensive, and highly refined pure substrates. The utilization of crude fractions from biorefineries, especially herbaceous lignocellulosic feedstocks, could significantly reduce costs. This presentation shows the microbial production of PHA from such a crude stream by a wild-type thermophilic bacterium Schlegelella thermodepolymerans [1]. Specifically, it uses crude xylose-rich fractions derived from a newly developed biorefinery process for grassy biomasses (the ALACEN process). This new stepwise mild flow-through biorefinery approach for grassy lignocellulosic biomass allows the production of various fractions: a fraction containing esterified aromatics, a monomeric xylose-rich stream, a glucose fraction, and a native-like lignin residue [2]. The crude xylose-rich fraction was free of fermentation-inhibiting compounds meaning that the bacterium S.thermodepolymerans could effectively use it for the production of one type of PHA, polyhydroxybutyrate. Almost 90% of the xylose in the refined wheat straw fraction was metabolized with simultaneous production of PHA, matching 90% of the PHA production per gram of sugars, comparable to PHA yields from commercially available xylose. In addition to xylose, S. thermodepolymerans converted oligosaccharides with a xylose backbone (xylans) into fermentable xylose, and subsequently utilized the xylose as a source for PHA production. Since the xylose-rich hydrolysates from the ALACEN process also contain some oligomeric xylose and minor hemicellulose-derived sugars, optimal valorization of the C5-fractions derived from the refinery process can be obtained using S. thermodepolymerans. This opens the way for further exploration of PHA production from C5-fractions out of a variety of herbaceous lignocellulosic biomasses using the ALACEN process combined with S. thermodepolymerans. Overall, the innovative utilization of renewable resources in fermentation technology, as shown herein, makes a solid contribution to the transition to a biobased economy.[1] W. Zhou, D.I. Colpa, H. Permentier, R.A. Offringa, L. Rohrbach, G.J.W. Euverink, J. Krooneman. Insight into polyhydroxyalkanoate (PHA) production from xylose and extracellular PHA degradation by a thermophilic Schlegelella thermodepolymerans. Resources, Conservation and Recycling 194 (2023) 107006, ISSN 0921-3449, https://doi.org/10.1016/j.resconrec.2023.107006. [2] S. Bertran-Llorens, W.Zhou. M.A.Palazzo, D.I.Colpa, G.J.W.Euverink, J.Krooneman, P.J.Deuss. ALACEN: a holistic herbaceous biomass fractionation process attaining a xylose-rich stream for direct microbial conversion to bioplastics. Submitted 2023.
LINK