The European Commission has selected the Northern Netherlands to become the leading European hydrogen region and supports establishment of a complete local (green) hydrogen ecosystem covering production, storage, distribution, refueling and final use of hydrogen (Cordis, H2Valley, 2019). In line with the European recognition, the Dutch government has set the goal to establish a hydrogen ecosystem by 2025 that would further expand to Western Europe by 2030. Yet before the European Union nominated the Northern Netherlands as European Hydrogen Valley, the key stakeholders in the Northern Netherlands – industry, SMEs, knowledge institutions and government – committed to the long-term cooperation in development of the green hydrogen market. Subsequently, the three regional governments of the Northern Netherlands, - Groningen, Friesland and Drenthe, - prepared the common Hydrogen Investment Agenda (2019), which was further elaborated in the common Hydrogen Investment Plan (2020). The latter includes investments amounting to over 9 billion euro, which is believed will secure some 66.000 existing jobs and help create between 25 thousands (in 2030) and 41 thousands (in 2050) new jobs.However, implementation of these ambitious plans to establish a hydrogen ecosystem of this scale will require not only investments into development of a new infrastructure or technological adaptation of present energy systems, e.g., pipelines, but also facilitation of economic transformation and securing the social support and acceptance. What are the prospects for the social support for the developing European Hydrogen Valley in the Northern Netherlands and its acceptance by inhabitants? The paper discusses the social support and acceptance aspects for a hydrogen ecosystem in the context of regional experiences of energy transition, including the concerns of energy justice, safety, and public trust that were raised in the recent past.
LINK
In Europe, green hydrogen and biogas/green gas are considered important renewable energy carriers, besides renewable electricity and heat. Still, incentives proceed slowly, and the feasibility of local green gas is questioned. A supply chain of decentralised green hydrogen production from locally generated electricity (PV or wind) and decentralised green gas production from locally collected biomass and biological power-to-methane technology was analysed and compared to a green hydrogen scenario. We developed a novel method for assessing local options. Meeting the heating demand of households was constrained by the current EU law (RED II) to reduce greenhouse gas (GHG) emissions by 80% relative to fossil (natural) gas. Levelised cost of energy (LCOE) analyses at 80% GHG emission savings indicate that locally produced green gas (LCOE = 24.0 €ct kWh−1) is more attractive for individual citizens than locally produced green hydrogen (LCOE = 43.5 €ct kWh−1). In case higher GHG emission savings are desired, both LCOEs go up. Data indicate an apparent mismatch between heat demand in winter and PV electricity generation in summer. Besides, at the current state of technology, local onshore wind turbines have less GHG emissions than PV panels. Wind turbines may therefore have advantages over PV fields despite the various concerns in society. Our study confirms that biomass availability in a dedicated region is a challenge.
DOCUMENT
This paper proposes a Hybrid Microgrid (HμG) model including distributed generation (DG) and a hydrogen-based storage system, controlled through a tailored control strategy. The HμG is composed of three DG units, two of them supplied by solar and wind sources, and the latter one based on the exploitation of theProton Exchange Membrane (PEM) technology. Furthermore, the system includes an alkaline electrolyser, which is used as a responsive load to balance the excess of Variable Renewable Energy Sources (VRES) production, and to produce the hydrogen that will be stored into the hydrogen tank and that will be used to supply the fuel cell in case of lack of generation. The main objectives of this work are to present a validated dynamic model for every component of the HμG and to provide a strategy to reduce as much as possible the power absorption from the grid by exploiting the VRES production. The alkaline electrolyser and PEM fuel cell models are validated through real measurements. The State of Charge (SoC) of the hydrogen tank is adjusted through an adaptive scheme. Furthermore, the designed supervisor power control allows reducing the power exchange and improving the system stability. Finally, a case, considering a summer load profile measured in an electrical substation of Politecnico di Torino, is presented. The results demonstrates the advantages of a hydrogen-based micro-grid, where the hydrogen is used as medium to store the energy produced by photovoltaic and wind systems, with the aim to improve the self-sufficiency of the system
MULTIFILE
Hydrogen (H2) is a key element in the Dutch energy transition, considered a sources of flexibility to balance the variable renewable energy sources, facilitating its integration into the energy system. But also as an energy carrier. Both the gas and electricity transmission operators (TSO) have the vision to interconnect their networks with H2, by distributing the green H2 produced with offshore electrolysers into high pressure gas pipelines to relive the overload electric network. The planned compressed H2 pipelines cross the north of North-Holland region, offering a backbone for a H2 economy. Furthermore, at regional level there are already a big number of privet-public H2 developments, among them the DuWaAl, which is a H2 production-demand chain, consists of 1) An H2 mill, 2) 5 filling stations in the region and 3) a large fleet of trucks and other users. Because of these developments, the North-Holland region needs a better insight into the position that H2 could fulfil in the local energy system to contribute to the energy transition. The aim of this research is to analyse these H2 economy, from the emergent to settled, by identifying early and potential producer- consumer, considering the future infrastructure requirements, and exploring economy-environmental impacts of different supply paths
DOCUMENT
The Power to Flex project aims to promote the development of storage possibilities from sustainable energy sources. Hydrogen is opted to be a feasible energy carrier, which can also be stored for prolonged times without further losses and can be transformed into electricity and heat when needed. Producing hydrogen from electrolysis processes has a low CO2 footprint, however the efficiency at both the system, stack and cell level still increases due to further research and development.Electrolysis is conventionally performed with direct current, of which the energy is usually supplied from the grid. Rectifiers are necessary to provide the energy source for electrolysis, which unfortunately waste some of the efficiency, albeit becoming more efficient. Although it is known that distortions, harmonics and ripple, in the current supply can cause decreased performance of the electrolysis, a fundamental understanding is often not provided in published research. Controlled modulation of the electrolysis process can however form a possibility to enhance the performance of electrolysis
DOCUMENT
Within the Flexnode Plus project the long-term degradation characteristics of a proton exchange membrane (PEM) electrolyzer (5.5 kW, AC, 1 Nm3/h H2) and fuel cell (1.0 kW, DC, 0.9 Nm3/h) was experimentally tested. The electrolyzer unit was operated at various loads and pressures for approximately 750 hours in total, while the fuel cell was operated at a constant load of 1 Ω resistance for approximately 1120 hours in total. The efficiency of the hydrogen production in the electrolyzer and the electricity production in the fuel cell was expressed using the hourly average system efficiency and average cell efficiency. Inorder to predict the state of health and remaining lifetime of the electrolyzer cell and fuel cell, the decay of the cell voltage over time was monitored and the direct mapping from aging data method was used.The electrolyzer cell showed a stable cell voltage and cell efficiency in the studied time period, with an average cell voltage decay rate of 0.5 μV/h. The average cell voltage of the fuel cell dropped with a rate of 2 μV/h during the studied time period.
DOCUMENT
TheUniversity of Twente, SaxionUniversityofAppliedSciences, ROCofTwente(vocationaleducation), centre of expertise TechYourFuture and the H2Hub Twente, in which various regional hydrogen interested corporations are involved, work together to shape a learning community (LC) for the development of innovative hydrogen technology. The cooperation between company employees, researchers and students provides a means to jointly work on solutions for real-life problems within the energy transition. This involves a cross-chain collaboration of technical programs, professorships and (field) experts, supported by human capital specialists. In the LC, a decentralized hydrogen production unit with storage of green hydrogen is designed and built. The main question for this research is: how can the design and construction process of an alkaline electrolyzer be arranged in a challenge based LC in which students, company employees (specialists) and researchers from the three educational institutions can learn, innovate, build-up knowledge and benefit? In this project the concept of a LC is developed and implemented in collaboration with companies and knowledge institutions at different levels. The concrete steps are described below: 1. Joint session between Human Resource and Development (HRD) specialists and engineers/researchers to explore the important factors for a LC. The results of this session will be incorporated into a blueprint for the LC by the human capital specialists. 2. The project is carried out according to the agreements of the blueprint. The blueprint is continuously updated based on the periodic reflections and observed points for improvement. 3. Impact interviews and periodic reflection review the proceeding of the LC in this engineering process. The first impact interview reveals that the concept of the LC is very beneficial for companies. It increases overall knowledge on hydrogen systems, promotes cooperation and connection with other companies and aids to their market proposition as well. Students get the opportunity to work in close contact with multiple company professionals and build up a network of their own. Also the cooperation with students from different disciplines broadens their view as a professional, something which is difficult to achieve in a mono-disciplinary project.
MULTIFILE
Decentralised renewable energy production in the form of fuels or electricity can have large scale deployment in future energy systems, but the feasibility needs to be assessed. The novelty of this paper is in the design and implementation of a mixed integer linear programming optimisation model to minimise the net present cost of decentralised hydrogen production for different energy demands on neighbourhood urban scale, while simultaneously adhering to European Union targets on greenhouse gas emission reductions. The energy system configurations optimised were assumed to possibly consist of a variable number or size of wind turbines, solar photovoltaics, grey grid electricity usage, battery storage, electrolyser, and hydrogen storage. The demands served are hydrogen for heating and mobility, and electricity for the households. A hydrogen residential heating project currently being developed in Hoogeveen, The Netherlands, served as a case study. Six scenarios were compared, each taking one or multiple energy demand services into question. For each scenario the levelised cost of hydrogen was calculated. The lowest levelised cost of hydrogen was found for the combined heating and mobility scenario: 8.36 €/kg for heating and 9.83 €/kg for mobility. The results support potential cost reductions of combined demand patterns of different energy services. A sensitivity analysis showed a strong influence of electrolyser efficiency, wind turbine parameters, and emission reduction factor on levelised cost. Wind energy was strongly preferred because of the lower cost and the low greenhouse gas emissions, compared to solar photovoltaics and grid electricity. Increasing electrolyser efficiency and greenhouse gas emission reduction of the used technologies deserve further research.
DOCUMENT