Evaluation of the hydrological performance of grassed swales usually needs long-term monitoring data. At present, suitable techniques for simulating the hydrological performance using limited monitoring data are not available. Therefore, current study aims to investigate the relationship between saturated hydraulic conductivity (Ks) fitting results and rainfall characteristics of various events series length. Data from a full-scale grassed swale (Enschede, the Netherlands) were utilized as long-term rainfall event series length (95 rainfall events) on the fitting outcomes. Short-term rainfall event series were extracted from these long-term series and used as input in fitting into a multivariate nonlinear model between Ks and its influencing rainfall indicators (antecedent dry days, temperature, rainfall, rainfall duration, total rainfall, and seasonal factor (spring, summer, autumn, and winter, herein refer as 1, 2, 3, and 4). Comparison of short-term and long-term rainfall event series fitting results allowed to obtain a representative short-term series that leads to similar results with those using long-term series. A cluster analysis was conducted based on the fitting results of the representative rainfall event series with their rainfall event characteristics using average values of influencing rainfall indicators. The seasonal index (average value of seasonal factors) was found to be the most representative short rainfall event series indicator. Furthermore, a Bayesian network was proposed in the current study to predict if a given short-term rainfall event series is representative. It was validated by a data series (58 rainfall events) from another full-scale grassed swale located in Utrecht, the Netherlands. Results revealed that it is quite promising and useful to evaluate the representativeness of short-term rainfall event series used for long-term hydrological performance evaluation of grassed swales.
DOCUMENT
Innovations are required in urban infrastructures due to the pressing needs for mitigating climate change and prevent resource depletion. In order to address the slow pace of innovation in urban systems, this paper analyses factors involved in attempts to introduce novel sanitary systems. Today new requirements are important: sanitary systems should have an optimal energy/climate performance, with recovery of resources, and with fewer emissions. Anaerobic digestion has been suggested as an alternative to current aerobic waste water treatment processes. This paper presents an overview of attempts to introduce novel anaerobic sanitation systems for domestic sanitation. The paper identifies main factors that contributed to a premature termination of such attempts. Especially smaller scale anaerobic sanitation systems will probably not be able to compete economically with traditional sewage treatment. However, anaerobic treatment has various advantages for mitigating climate change, removing persistent chemicals, and for the transition to a circular economy. The paper concludes that loss avoidance, both in the sewage system and in the waste water treatment plants, should play a key role in determining experiments that could lead to a transition in sanitation. http://dx.doi.org/10.13044/j.sdewes.d6.0214 LinkedIn: https://www.linkedin.com/in/karel-mulder-163aa96/
MULTIFILE
Swales are widely used Sustainable Urban Drainage Systems (SuDS) that can reduce peak flow, collect and retain water and improve groundwater recharge. Most previous research has focused on the unsaturated infiltration rates of swales without considering the variation in infiltration rates under extreme climate events, such as multiple stormwater events after a long drought period. Therefore, fieldwork was carried out to collect hydraulic data of three swales under drought conditions followed by high precipitation. For this simulation, a new full-scale infiltration method was used to simulate five rainfall events filling up the total storage volume of the swales under drought conditions. The results were then compared to earlier research under regular circumstances. The results of this study show that three swales situated in the same street show a variation in initial infiltration capacity of 1.6 to 11.9 m/d and show higher infiltration rates under drought conditions. The saturated infiltration rate is up to a factor 4 lower than the initial unsaturated rate with a minimal rate of 0.5 m/d, close to the minimum required infiltration rate. Significant spatial and time variable infiltration rates are also found at similar research locations with multiple green infrastructures in close range. If the unsaturated infiltration capacity is used as the design input for computer models, the infiltration capacity may be significantly overestimated. The innovative method and the results of this study should help stormwater managers to test, model, plan and schedule maintenance requirements with more confidence, so that they will continue to perform satisfactorily over their intended design lifespan.
DOCUMENT