Evaluation of the hydrological performance of grassed swales usually needs long-term monitoring data. At present, suitable techniques for simulating the hydrological performance using limited monitoring data are not available. Therefore, current study aims to investigate the relationship between saturated hydraulic conductivity (Ks) fitting results and rainfall characteristics of various events series length. Data from a full-scale grassed swale (Enschede, the Netherlands) were utilized as long-term rainfall event series length (95 rainfall events) on the fitting outcomes. Short-term rainfall event series were extracted from these long-term series and used as input in fitting into a multivariate nonlinear model between Ks and its influencing rainfall indicators (antecedent dry days, temperature, rainfall, rainfall duration, total rainfall, and seasonal factor (spring, summer, autumn, and winter, herein refer as 1, 2, 3, and 4). Comparison of short-term and long-term rainfall event series fitting results allowed to obtain a representative short-term series that leads to similar results with those using long-term series. A cluster analysis was conducted based on the fitting results of the representative rainfall event series with their rainfall event characteristics using average values of influencing rainfall indicators. The seasonal index (average value of seasonal factors) was found to be the most representative short rainfall event series indicator. Furthermore, a Bayesian network was proposed in the current study to predict if a given short-term rainfall event series is representative. It was validated by a data series (58 rainfall events) from another full-scale grassed swale located in Utrecht, the Netherlands. Results revealed that it is quite promising and useful to evaluate the representativeness of short-term rainfall event series used for long-term hydrological performance evaluation of grassed swales.
DOCUMENT
Swales are widely used Sustainable Urban Drainage Systems (SuDS) that can reduce peak flow, collect and retain water and improve groundwater recharge. Most previous research has focused on the unsaturated infiltration rates of swales without considering the variation in infiltration rates under extreme climate events, such as multiple stormwater events after a long drought period. Therefore, fieldwork was carried out to collect hydraulic data of three swales under drought conditions followed by high precipitation. For this simulation, a new full-scale infiltration method was used to simulate five rainfall events filling up the total storage volume of the swales under drought conditions. The results were then compared to earlier research under regular circumstances. The results of this study show that three swales situated in the same street show a variation in initial infiltration capacity of 1.6 to 11.9 m/d and show higher infiltration rates under drought conditions. The saturated infiltration rate is up to a factor 4 lower than the initial unsaturated rate with a minimal rate of 0.5 m/d, close to the minimum required infiltration rate. Significant spatial and time variable infiltration rates are also found at similar research locations with multiple green infrastructures in close range. If the unsaturated infiltration capacity is used as the design input for computer models, the infiltration capacity may be significantly overestimated. The innovative method and the results of this study should help stormwater managers to test, model, plan and schedule maintenance requirements with more confidence, so that they will continue to perform satisfactorily over their intended design lifespan.
DOCUMENT
In this article, we assess the potential of alternative land use systems using non-drainage peatland species which could eventually phase out or partly replace oil palm plantations on undrainable peatlands. We have used the ecosystem services approach to analyse what scenarios using drainage-free peatland species could be suitable alternatives for oil palm cultivation on peat and how these scenarios compare to oil palm plantations in terms of selected ecosystem services. Our results indicate that alternative paludiculture systems will provide more direct and indirect ecosystem services than oil palm plantations on peat. We also found that stakeholders were aware of issues with growing oil palm on peat, and that there was a general intention for sustainable use of peatlands amongst several groups of stakeholders. Replacing oil palm with alternative systems such as paludiculture in Malaysia is not yet realistic. The most important impediments are a lack of knowledge on potential of non-drainage peatland species and its associated value chains, as well as the technical difficulty for smallholders to implement such a system. We recommend starting experimental plantings with paludiculture systems to further test species performance, life cycle analysis, growth, intercropping limitations and possibilities, yields and improvements in the value chain.
DOCUMENT
Innovations are required in urban infrastructures due to the pressing needs for mitigating climate change and prevent resource depletion. In order to address the slow pace of innovation in urban systems, this paper analyses factors involved in attempts to introduce novel sanitary systems. Today new requirements are important: sanitary systems should have an optimal energy/climate performance, with recovery of resources, and with fewer emissions. Anaerobic digestion has been suggested as an alternative to current aerobic waste water treatment processes. This paper presents an overview of attempts to introduce novel anaerobic sanitation systems for domestic sanitation. The paper identifies main factors that contributed to a premature termination of such attempts. Especially smaller scale anaerobic sanitation systems will probably not be able to compete economically with traditional sewage treatment. However, anaerobic treatment has various advantages for mitigating climate change, removing persistent chemicals, and for the transition to a circular economy. The paper concludes that loss avoidance, both in the sewage system and in the waste water treatment plants, should play a key role in determining experiments that could lead to a transition in sanitation. http://dx.doi.org/10.13044/j.sdewes.d6.0214 LinkedIn: https://www.linkedin.com/in/karel-mulder-163aa96/
MULTIFILE
With summaries in Dutch, Esperanto and English. DOI: 10.4233/uuid:d7132920-346e-47c6-b754-00dc5672b437 "The subject of this study is deformation analysis of the earth's surface (or part of it) and spatial objects on, above or below it. Such analyses are needed in many domains of society. Geodetic deformation analysis uses various types of geodetic measurements to substantiate statements about changes in geometric positions.Professional practice, e.g. in the Netherlands, regularly applies methods for geodetic deformation analysis that have shortcomings, e.g. because the methods apply substandard analysis models or defective testing methods. These shortcomings hamper communication about the results of deformation analyses with the various parties involved. To improve communication solid analysis models and a common language have to be used, which requires standardisation.Operational demands for geodetic deformation analysis are the reason to formulate in this study seven characteristic elements that a solid analysis model needs to possess. Such a model can handle time series of several epochs. It analyses only size and form, not position and orientation of the reference system; and datum points may be under influence of deformation. The geodetic and physical models are combined in one adjustment model. Full use is made of available stochastic information. Statistical testing and computation of minimal detectable deformations is incorporated. Solution methods can handle rank deficient matrices (both model matrix and cofactor matrix). And, finally, a search for the best hypothesis/model is implemented. Because a geodetic deformation analysis model with all seven elements does not exist, this study develops such a model.For effective standardisation geodetic deformation analysis models need: practical key performance indicators; a clear procedure for using the model; and the possibility to graphically visualise the estimated deformations."
DOCUMENT
For environmental governance to be more effective and transformative, it needs to enhance the presence of experimental and innovative approaches for participation. This enhancement requires a transformation of environmental governance, as too often the (public) participation process is set up as a formal obligation in the development of a proposed intervention. This article, in search of alternatives, and in support of this transformation elaborates on spaces where participatory and deliberative governance processes have been deployed. Experiences with two mediated participation methodologies – community art and visual problem appraisal – allow a demonstration of their potential, relevance and attractiveness. Additionally, the article analyzes the challenges that result from the nature of these arts-based methodologies, from the confrontational aspects of voices overlooked in conventional approaches, and from the need to rethink professionals’ competences. Considering current environmental urgencies, mediated participation and social imaginaries still demonstrate capacities to open new avenues for action and reflection.
DOCUMENT
The ‘Grand Challenges’ of our times, like climate change, resource depletion, global inequity, and the destruction of wildlife and biodiversity can only be addressed by innovating cities. Despite the options of tele-working, tele-trading and tele-amusing, that allow people to participate in ever more activities, wherever they are, people are resettling in cities at an unprecedented speed. The forecasted ‘rurification’ of society did not occur. Technological development has drained rural society from its main source of income, agriculture, as only a marginal fraction of the labour force is employed in agriculture in the rich parts of the world. Moreover, technological innovation created new jobs in the IT and service sectors in cities. Cities are potentially far more resource efficient than rural areas. In a city transport distances are shorter, infrastructures can be applied to provide for essential services in a more efficient way and symbiosis might be developed between various infrastructures. However, in practice, urban infrastructures are not more efficient than rural infrastructures. This paper explores the reasons why. It digs into the reasons why the symbiotic options that are available in cities are not (sufficiently) utilised. The main reason for this is not of an economic nature: Infrastructure organisations are run by experts who are part of a strong paradigmatic community. Dependence on other organisations is regarded as limiting the infrastructure organisation’s freedom of action to achieve its own goals. Expert cultures are transferred in education, professional associations, and institutional arrangements. By 3 concrete examples of urban systems, the paper will analyse how various paradigms of experts co-evolved with evolving systems. The paper reflects on recent studies that identified professional education as the initiation into such expert paradigms. It will thereby relate lack of urban innovation to the monodisciplinary education of experts and the strong institutionalised character of expertise. https://doi.org/10.1007/978-3-319-63007-6_43 LinkedIn: https://www.linkedin.com/in/karelmulder/
MULTIFILE
Bij zijn inauguratie presenteerde Luewton Agostinho een globale visie op watertechnologie, de fysische principes die hierbij betrokken zijn en de uitdagingen, behoeften en conflicten bij het wetenschappelijk en toegepast onderzoek
MULTIFILE
The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate.
DOCUMENT
Permanent grassland soils can act as a sink for carbon and may therefore positively contribute to climate change mitigation and adaptation. We compared young (5–15 years since latest grassland renewal) with old (>20 years since latest grassland renewal) permanent grassland soils in terms of carbon stock, carbon sequestration, drought tolerance and flood resistance. The research was carried out on marine clay soil at 10 dairy farms with young and old permanent grassland. As hypothesized, the carbon stock was larger in old grassland (62 Mg C ha−1) topsoil (0–10 cm) than in young grassland topsoil (51 Mg C ha−1). The carbon sequestration rate was greater in young (on average 3.0 Mg C ha−1 year−1) compared with old grassland (1.6 Mg C ha−1 year−1) and determined by initial carbon stock. Regarding potential drought tolerance, we found larger soil moisture and soil organic matter (SOM) contents in old compared with young grassland topsoils. As hypothesized, the old grassland soils were more resistant to heavy rainfall as measured by water infiltration rate and macroporosity (at 20 cm depth) in comparison with the young grassland soils. In contrast to our hypothesis we did not find a difference in rooting between young and old permanent grassland, probably due to large variability in root biomass and root tip density. We conclude that old grasslands at dairy farms on clay soil can contribute more to the ecosystem services climate change mitigation and climate change adaptation than young grasslands. This study shows that under real farm conditions on a clay topsoil, carbon stock increases with grassland age and even after 30 years carbon saturation has not been reached. Further study is warranted to determine by how much extending grassland age can contribute to climate change mitigation and adaptation.
DOCUMENT