ObjectivesAdherence to lifestyle interventions is crucial for the treatment of obesity. However, there is little research about adherence to lifestyle interventions in persons around retirement age. The objectives of this study are (1) to identify factors associated with the adherence to resistance training and a hypocaloric diet and (2) to describe the association between adherence and changes in body composition outcome parameters.DesignThis secondary data analysis included three randomized controlled trials.Setting & participantsThe inclusion criteria of the participants were an age of 55–75 years, a BMI ≥ 25 kg/m2 and receiving both a hypocaloric diet and resistance training. All participants were residing in the community.MeasurementsAdherence to hypocaloric diet was measured through the mean dietary intake on the basis of a 3-day dietary record. If the participant consumed at least 600 kcal less than the individual caloric requirements, they were considered adherent. Adherence to resistance training was achieved if ≥67% of the recommended training sessions were attended over the course of the study periods.Results232 participants were included, 47.0% female, mean age 64.0 (±5.5) years. 80.2% adhered to resistance training and 51.3% adhered to a hypocaloric diet. Older age (Beta 0.41; 95% CI 0.05, 0.78; p = 0.028) and male sex (Beta 7.7; 95% CI 3.6, 11; p < 0.001) were associated with higher resistance training adherence. A higher BMI at baseline (Beta 6.4; 95% CI 3.6, 9.2; p < 0.001) and male sex (Beta 65; 95% CI 41, 88; p < 0.001) were associated with higher adherence to hypocaloric diet.ConclusionWe identified several associated factors (sex, age and BMI at baseline) that should be considered to promote adherence in future lifestyle intervention studies in persons around retirement age. We recommend including behavior change techniques in lifestyle interventions and consider sex-specific interventions to improve the adherence of women.
MULTIFILE
Aims: This systematic review and meta-analysis evaluates the additional effect of exercise to hypocaloric diet on body weight, body composition, glycaemic control and cardio-respiratory fitness in adults with overweight or obesity and type 2 diabetes. Methods: Embase, Medline, Web of Science and Cochrane Central databases were evaluated, and 11 studies were included. Random-effects meta-analysis was performed on body weight and measures of body composition and glycaemic control, to compare the effect of hypocaloric diet plus exercise with hypocaloric diet alone. Results: Exercise interventions consisted of walking or jogging, cycle ergometer training, football training or resistance training and duration varied from 2 to 52 weeks. Body weight and measures of body composition and glycaemic control decreased during both the combined intervention and hypocaloric diet alone. Mean difference in change of body weight (−0.77 kg [95% CI: −2.03; 0.50]), BMI (−0.34 kg/m2 [95% CI: −0.73; 0.05]), waist circumference (−1.42 cm [95% CI: −3.84; 1.00]), fat-free mass (−0.18 kg [95% CI: −0.52; 0.17]), fat mass (−1.61 kg [95% CI: −4.42; 1.19]), fasting glucose (+0.14 mmol/L [95% CI: −0.02; 0.30]), HbA1c (−1 mmol/mol [95% CI: −3; 1], −0.1% [95% CI: −0.2; 0.1]) and HOMA-IR (+0.01 [95% CI: −0.40; 0.42]) was not statistically different between the combined intervention and hypocaloric diet alone. Two studies reported VO2max and showed significant increases upon the addition of exercise to hypocaloric diet. Conclusions: Based on limited data, we did not find additional effects of exercise to hypocaloric diet in adults with overweight or obesity and type 2 diabetes on body weight, body composition or glycaemic control, while cardio-respiratory fitness improved.
DOCUMENT
BACKGROUNDThis systematic review and meta-analysis evaluates the additional effects of exercise to hypocaloric diet on body weight, body composition, glycaemic control, and cardio-respiratory fitness in adults with overweight or obesity and type 2 diabetes.METHODSEmbase, Medline, Web of Science, and Cochrane Central databases were evaluated and 11 studies were included. Random-effects meta-analysis was performed on body weight and measures of body composition and glycaemic control, to compare the effect of hypocaloric diet plus exercise with hypocaloric diet alone.RESULTSExercise interventions consisted of walking or jogging, cycle ergometer training, football training, or resistance training, and duration varied from 2 to 52!weeks. Body weight and measures of body composition and glycemic control decreased during both the combined intervention and hypocaloric diet alone. Mean difference in change of body weight (0.77 kg [95% CI: 2.03; 0.50]), BMI (0.34 kg/m2 [95% CI 0.73; 0.05]), waist circumference (1.42 cm [95% CI: 3.84; 1.00]), fat-free mass (0.18 kg [95% CI 0.52; 0.17]), fat mass (1.61 kg [95% CI 4.42; 1.19]), fasting glucose (+0.14 mmol/l [95% CI 0.02; 0.30]), HbA1c (0.06 % [95% CI 0.25; 0.13]), and HOMA-IR (+0.01 [95% CI: 0.40; 0.42]) was not statistically different between the combined intervention and hypocaloric diet alone. Two studies reported VO2max and showed significant increases upon addition of exercise to hypocaloric diet.CONCLUSIONAdditional effects of exercise to hypocaloric diet in adults with overweight or obesity and type 2 diabetes were not shown for body weight, body composition, or glycaemic control, while cardio-respiratory fitness improves.
MULTIFILE