This paper conceptualises tourist idleness as a temporary engagement in slow, slothful and entirely unstructured holiday activities. We aim to extend the studies that prioritise the modalities of holidays in nature that encourage simplified, slower, immersive experiences, and which celebrate mindfulness, slowness and stillness as part of a tourist journey. In framing idleness as a relaxing, creative and recuperative holiday practice, we suggest that creating places of otium which encourage ‘doing nothing’ can in many ways enhance tourist wellbeing. To this end, we discuss the significance of spatial, temporal and existential elements of tourist idleness, whilst arguing that this ‘practice’ should be more celebrated in our modern, high-speed societies.
MULTIFILE
tract Micro wind turbines can be structurally integrated on top of the solid base of noise barriers near highways. A number of performance factors were assessed with holistic experiments in wind tunnel and in the field. The wind turbines underperformed when exposed in yawed flow conditions. The theoretical cosθ theories for yaw misalignment did not always predict power correctly. Inverter losses turned out to be crucial especially in standby mode. Combination of standby losses with yawed flow losses and low wind speed regime may even result in a net power consuming turbine. The micro wind turbine control system for maintaining optimal power production underperformed in the field when comparing tip speed ratios and performance coefficients with the values recorded in the wind tunnel. The turbine was idling between 20%–30% of time as it was assessed for sites with annual average wind speeds of three to five meters per second without any power production. Finally, the field test analysis showed that inadequate yaw response could potentially lead to 18% of the losses, the inverter related losses to 8%, and control related losses to 33%. The totalized loss led to a 48% efficiency drop when compared with the ideal power production measured before the inverter. Micro wind turbine’s performance has room for optimization for application in turbulent wind conditions on top of noise barriers. https://doi.org/10.3390/en14051288
DOCUMENT
Game development businesses often choose Lua for separating scripted game logic from reusable engine code. Lua can easily be embedded, has simple interfaces, and offers a powerful and extensible scripting language. Using Lua, developers can create prototypes and scripts at early development stages. However, when larger quantities of engine code and script are available, developers encounter maintainability and quality problems. First, the available automated solutions for interoperability do not take domain-specific optimizations into account. Maintaining a coupling by hand between the Lua interpreter and the engine code, usually in C++, is labour intensive and error-prone. Second, assessing the quality of Lua scripts is hard due to a lack of tools that support static analysis. Lua scripts for dynamic analysis only report warnings and errors at run-time and are limited to code coverage. A common solution to the first problem is developing an Interface Definition Language (IDL) from which ”glue code”, interoperability code between interfaces, is generated automatically. We address quality problems by proposing a method to complement techniques for Lua analysis. We introduce Lua AiR (Lua Analysis in Rascal), a framework for static analysis of Lua script in its embedded context, using IDL models and Rascal.
DOCUMENT
The American company Amazon has made headlines several times for monitoring its workers in warehouses across Europe and beyond.1 What is new is that a national data protection authority has recently issued a substantial fine of €32 million to the e-commerce giant for breaching several provisions of the General Data Protection Regulation (gdpr) with its surveillance practices. On 27 December 2023, the Commission nationale de l’informatique et des libertés (cnil)—the French Data Protection Authority—determined that Amazon France Logistique infringed on, among others, Articles 6(1)(f) (principle of lawfulness) and 5(1)(c) (data minimization) gdpr by processing some of workers’ data collected by handheld scanner in the distribution centers of Lauwin-Planque and Montélimar.2 Scanners enable employees to perform direct tasks such as picking and scanning items while continuously collecting data on quality of work, productivity, and periods of inactivity.3 According to the company, this data processing is necessary for various purposes, including quality and safety in warehouse management, employee coaching and performance evaluation, and work planning.4 The cnil’s decision centers on data protection law, but its implications reach far beyond into workers’ fundamental right to health and safety at work. As noted in legal literature and policy documents, digital surveillance practices can have a significant impact on workers’ mental health and overall well-being.5 This commentary examines the cnil’s decision through the lens of European occupational health and safety (EU ohs). Its scope is limited to how the French authority has interpreted the data protection principle of lawfulness taking into account the impact of some of Amazon’s monitoring practices on workers’ fundamental right to health and safety.
MULTIFILE
Truly shared warehousing implies converting inactive, idle, and excess capacity of existing assets, warehousing space, into active revenue and profit by offering them to other parties. Although, truly shared warehousing is believed to be an innovative approach to tackle existing warehousing inefficiencies, it is not common practice yet. This contribution discusses truly shared warehousing in relation to the existing business models of warehouse-providers and shows the causes of reluctancy between parties to collaborate. Next, we examine the risks, challenges, conditions, and motivations for warehouse-space providers or facilitators and their customers to further use the concept of collaboration in relation to truly shared warehousing in particular. The results show that not all conditions and motivations are in place to really work together for logistics providers and platform providers
LINK
Personal data is increasingly used by cities to track the behavior of their inhabitants. While the data is often used to mainly provide information to the authorities, it can also be harnessed for providing information to the citizens in real-time. In an on-going research project on increasing the awareness of motorists w.r.t. the environmental consequences of their driving behavior, we make use of sensors, artificial intelligence, and real-time feedback to design an intervention. A key component for successful deployment of the system is data related to the personal driving behavior of individual motorists. Through this outset, we identify challenges and research questions that relate to the use of personal data in systems, which are designed to increase the quality of life of the inhabitants of the built environment.
DOCUMENT
A software system is described that uses the agent concept in the Cell Control layer. Important design goals are: the system continues as good as possible after a process crash, crashed processes are recreated whenever possible, and equivalent workstations are allocated dynamically. This project is carried out mainly to investigate whether the agent concept is applicable in such a situation. The system is not operational yet, but will be built in the period ahead. In addition, a graphic simulator for a small manufacturing system will be built for testing the agent structure.
DOCUMENT
Recent studies show that charging stations are operated in an inefficient way. Due to the fact that electric vehicle (EV) drivers charge while they park, they tend to keep the charging station occupied while not charging. This prevents others from having access. This study is the first to investigate the effect of a pricing strategy to increase the efficient use of electric vehicle charging stations. We used a stated preference survey among EV drivers to investigate the effect of a time-based fee to reduce idle time at a charging station. We tested the effect of such a fee under different scenarios and we modelled the heterogeneity among respondents using a latent class discrete choice model. We find that a fee can be very effective in increasing the efficiency at a charging station but the response to the fee varies among EV drivers depending on their current behaviour and the level of parking pressure they experience near their home. From these findings we draw implications for policy makers and charging point operators who aim to optimize the use of electric vehicle charging stations.
DOCUMENT