Active participation of stakeholders in health research practice is important to generate societal impact of outcomes, as innovations will more likely be implemented and disseminated in clinical practice. To foster a co-creative process, numerous frameworks and tools are available. As they originate from different professions, it is not evident that health researchers are aware of these tools, or able to select and use them in a meaningful way. This article describes the bottom-up development process of a compass and presents the final outcome. This Co-creation Impact Compass combines a well-known business model with tools from design thinking that promote active participation by all relevant stakeholders. It aims to support healthcare researchers to select helpful and valid co-creation tools for the right purpose and at the right moment. Using the Co-creation Impact Compass might increase the researchers’ understanding of the value of co-creation, and it provides help to engage stakeholders in all phases of a research project.
In dit rapport wordt verslag gedaan van een onderzoek met behulp van de Most Significant Change benadering, naar de impact van een Professionaliseringstraject Ethisch Actorschap (PEA). Ethische reflectie is de laatste jaren ‘booming business’. Steeds meer organisaties besteden aandacht aan ethiek op de werkvloer en stimuleren ethische reflectie van medewerkers. Als ethici en onderzoekers verwelkomen wij deze ontwikkeling uiteraard, maar wij stelden onszelf ook de vraag: wat levert al die reflectie de medewerkers en cliënten eigenlijk op? Deze vraag was aanleiding om een onderzoek hiernaar in te richten, met als hoofdvraag: Tot welke ethische impact leidt een ethisch professionaliseringstraject en op welke manier kunnen we deze in beeld brengen?
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
National forestry Commission (SBB) and National Park De Biesbosch. Subcontractor through NRITNational parks with large flows of visitors have to manage these flows carefully. Methods of data collection and analysis can be of help to support decision making. The case of the Biesbosch National Park is used to find innovative ways to figure flows of yachts, being the most important component of water traffic, and to create a model that allows the estimation of changes in yachting patterns resulting from policy measures. Recent policies oriented at building additional waterways, nature development areas and recreational concentrations in the park to manage the demands of recreation and nature conservation offer a good opportunity to apply this model. With a geographical information system (GIS), data obtained from aerial photographs and satellite images can be analyzed. The method of space syntax is used to determine and visualize characteristics of the network of leisure routes in the park and to evaluate impacts resulting from expected changes in the network that accompany the restructuring of waterways.
Chemical preservation is an important process that prevents foods, personal care products, woods and household products, such as paints and coatings, from undesirable change or decomposition by microbial growth. To date, many different chemical preservatives are commercially available, but they are also associated with health threats and severe negative environmental impact. The demand for novel, safe, and green chemical preservatives is growing, and this process is further accelerated by the European Green Deal. It is expected that by the year of 2050 (or even as soon as 2035), all preservatives that do not meet the ‘safe-by-design’ and ‘biodegradability’ criteria are banned from production and use. To meet these European goals, there is a large need for the development of green, circular, and bio-degradable antimicrobial compounds that can serve as alternatives for the currently available biocidals/ preservatives. Anthocyanins, derived from fruits and flowers, meet these sustainability goals. Furthermore, preliminary research at the Hanze University of Applied Science has confirmed the antimicrobial efficacy of rose and tulip anthocyanin extracts against an array of microbial species. Therefore, these molecules have the potential to serve as novel, sustainable chemical preservatives. In the current project we develop a strategy consisting of fractionation and state-of-the-art characterization methods of individual anthocyanins and subsequent in vitro screening to identify anthocyanin-molecules with potent antimicrobial efficacy for application in paints, coatings and other products. To our knowledge this is the first attempt that combines in-depth chemical characterization of individual anthocyanins in relation to their antimicrobial efficacy. Once developed, this strategy will allow us to single out anthocyanin molecules with antimicrobial properties and give us insight in structure-activity relations of individual anthocyanins. Our approach is the first step towards the development of anthocyanin molecules as novel, circular and biodegradable non-toxic plant-based preservatives.