In the Netherlands an innovative programme for early detection of chronic obstructive pulmonary disease (COPD) in primary care among patients aged 40–70 years has been evaluated in both an effect study and a pilot implementation study. Health-care providers identified four obstacles for successful implementation of a COPD early detection programme. This Brief Communication describes the most important results of a qualitative study using in-depth interviews.
BACKGROUND: Admission to a hospital is often related with hospital-associated disabilities. Improving physical activity during hospitalization is considered effective to counteract hospital-associated disabilities, whereas many studies report on very low physical activity levels. Gradually developing and implementing interventions in cocreation with patients and health care professionals rather than implementing predefined interventions may be more effective in creating sustainable changes in everyday clinical practice. However, no studies have reported on the use of cocreation in the development and implementation of interventions aimed at improving physical activity.OBJECTIVE: This protocol presents a study that aims to investigate if interventions, which will be developed and implemented in cocreation, improve physical activity among patients in surgery, internal medicine, and cardiology hospital wards. The secondary aims are to investigate effectiveness in terms of the reduction in the time patients spend in bed, the length of hospital stay, and the proportion of patients going home after discharge.METHODS: The Better By Moving study takes place for 12 months at the following five different wards of a university hospital: two gastrointestinal and oncology surgery wards, one internal medicine hematology ward, one internal medicine infectious diseases ward, and one cardiology ward. The step-by-step implementation model of Grol and Wensing is used, and all interventions are developed and implemented in cocreation with health care professionals and patients. Outcome evaluation is performed across the different hospital wards and for each hospital ward individually. The primary outcome is the amount of physical activity in minutes assessed with the Physical Activity Monitor AM400 accelerometer in two individual groups of patients (preimplementation [n=110], and 13 months after the start of the implementation [n=110]). The secondary outcomes are time spent in bed measured using behavioral mapping protocols, and length of stay and discharge destination assessed using organizational data. A process evaluation using semistructured interviews and surveys is adopted to evaluate the implementation, mechanisms of impact, context, and perceived barriers and enablers.RESULTS: This study is ongoing. The first participant was enrolled in January 2018. The last outcome evaluation and process evaluation are planned for May and June 2020, respectively. Results are expected in April 2021.CONCLUSIONS: This study will provide information about the effectiveness of developing and implementing interventions in cocreation with regard to improving physical activity in different subgroups of hospitalized patients in a university hospital. By following step-by-step implementation and by performing process evaluation, we will identify the barriers and enablers for implementation and describe the effect of new interventions on improving physical activity among hospitalized patients.TRIAL REGISTRATION: Netherlands Trial Register NL8480; https://www.trialregister.nl/trial/8480.INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/19000.
Objective: To evaluate the preliminary effectiveness of a goal-directed movement intervention using a movement sensor on physical activity of hospitalized patients. Design: Prospective, pre-post study. Setting: A university medical center. Participants: Patients admitted to the pulmonology and nephrology/gastro-enterology wards. Intervention: The movement intervention consisted of (1) self-monitoring of patients' physical activity, (2) setting daily movement goals and (3) posters with exercises and walking routes. Physical activity was measured with a movement sensor (PAM AM400) which measures active minutes per day. Main measures: Primary outcome was the mean difference in active minutes per day pre- and post-implementation. Secondary outcomes were length of stay, discharge destination, immobility-related complications, physical functioning, perceived difficulty to move, 30-day readmission, 30-day mortality and the adoption of the intervention. Results: A total of 61 patients was included pre-implementation, and a total of 56 patients was included post-implementation. Pre-implementation, patients were active 38 ± 21 minutes (mean ± SD) per day, and post-implementation 50 ± 31 minutes per day (Δ12, P = 0.031). Perceived difficulty to move decreased from 3.4 to 1.7 (0-10) (Δ1.7, P = 0.008). No significant differences were found in other secondary outcomes. Conclusions: The goal-directed movement intervention seems to increase physical activity levels during hospitalization. Therefore, this intervention might be useful for other hospitals to stimulate inpatient physical activity.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
Cross-Re-Tour supports European tourism SME while implementing digital and circular economy innovations. The three year project promotes uptake and replication by tourism SMEs of tools and solutions developed in other sectors, to mainstream green and circular tourism business operations.At the start of the project existing knowledge-gaps of tourism SMEs will be researched through online dialogues. This will be followed by a market scan, an overview of existing state of the art solutions to digital and green constraints in other economic sectors, which may be applied to tourism SME business operations: water, energy, food, plastic, transport and furniture /equipment. The scan identifies best practices from other sectors related to nudging of clients towards sustainable behaviour and nudging of staff on how to best engage with new tourism market segments.The next stage of the project relates to two design processes: an online diagnostic tool that allows for measuring and assessing (160) SME’s potential to adapt existing solutions in digital and green challenges, developed in other economic sectors. Next to this, a knowledge hub, addresses knowledge constraints and proposes solutions, business advisory services, training activities to SMEs participating. The hub acts as a matchmaker, bringing together 160 tourism SMEs searching for solutions, with suppliers of existing solutions developed in other sectors. The next key activity is a cross-domain open innovation programme, that will provide 80 tourism SMEs with financial support (up to EUR 30K). Examples of partnerships could be: a hotel and a supplier of refurbished matrasses for hospitals; a restaurant and a supplier of food rejected by supermarkets, a dance event organiser and a supplier of refurbished water bottles operating in the cruise industry, etc.The 80 cross-domain partnerships will be supported through the knowledge hub and their business innovation advisors. The goal is to develop a variety of innovative partnerships to assure that examples in all operational levels of tourism SMEs.The innovation projects shall be presented during a show-and-share event, combined with an investors’ pitch. The diagnostic tool, market scan, knowledge hub, as well as the show and share offer excellent opportunities to communicate results and possible impact of open innovation processes to a wider international audience of destination stakeholders and non-tourism partners. Societal issueSupporting the implementation of digital and circular economy solutions in tourism SMEs is key for its transition towards sustainable low-impact industry and society. Benefit for societySolutions are already developed in other sectors but the cross-over towards tourism is not happening. The project bridges this gap.
Over a million people in the Netherlands have type 2 diabetes (T2D), which is strongly related to overweight, and many more people are at-risk. A carbohydrate-rich diet and insufficient physical activity play a crucial role in these developments. It is essential to prevent T2D, because this condition is associated with a reduced quality of life, high healthcare costs and premature death due to cardiovascular diseases. The hormone insulin plays a major role in this. This hormone lowers the blood glucose concentration through uptake in body cells. If an excess of glucose is constantly offered, initially the body maintains blood glucose concentration within normal range by releasing higher concentrations of insulin into the blood, a condition that is described as “prediabetes”. In a process of several years, this compensating mechanism will eventually fail: the blood glucose concentration increases resulting in T2D. In the current healthcare practice, T2D is actually diagnosed by recognizing only elevated blood glucose concentrations, being insufficient for identification of people who have prediabetes and are at-risk to develop T2D. Although the increased insulin concentrations at normal glucose concentrations offer an opportunity for early identification/screening of people with prediabetes, there is a lack of effective and reliable methods/devices to adequately measure insulin concentrations. An integrated approach has been chosen for identification of people at-risk by using a prediabetes screening method based on insulin detection. Users and other stakeholders will be involved in the development and implementation process from the start of the project. A portable and easy-to-use demonstrator will be realised, based on rapid lateral flow tests (LFTs), which is able to measure insulin in clinically relevant samples (serum/blood) quickly and reliably. Furthermore, in collaboration with healthcare professionals, we will investigate how this screening method can be implemented in practice to contribute to a healthier lifestyle and prevent T2D.