The evolving landscape of science communication highlights a shift from traditional dissemination to participatory engagement. This study explores Dutch citizens’ perspectives on science communication, focusing on science capital, public engagement, and communication goals. Using a mixed-methods approach, it combines survey data (n = 376) with focus group (n = 66) insights. Findings show increasing public interest in participating in science, though barriers like knowledge gaps persist. Trust-building, engaging adolescents, and integrating science into society were identified as key goals. These insights support the development of the Netherlands’ National Centre of Expertise on Science and Society and provide guidance for inclusive, effective science communication practices.
LINK
Worldwide, pupils with migrant backgrounds do not participate in school STEM subjects as successfully as their peers. Migrant pupils’ subject-specific language proficiency lags behind, which hinders participation and learning. Primary teachers experience difficulty in teaching STEM as well as promoting required language development. This study investigates how a professional development program (PDP) focusing on inclusive STEM teaching can promote teacher learning of language-promoting strategies (promoting interaction, scaffolding language and using multilingual resources). Participants were five case study teachers in multilingual schools in the Netherlands (N = 2), Sweden (N = 1) and Norway (N = 2), who taught in primary classrooms with migrant pupils. The PDP focused on three STEM units (sound, maintenance, plant growth) and language-promoting strategies. To trace teachers’ learning, three interviews were conducted with each of the five teachers (one after each unit). The teachers also filled in digital logs (one after each unit). The interviews showed positive changes in teachers’ awareness, beliefs and attitudes towards language-supporting strategies. However, changes in practice and intentions for practice were reported to a lesser extent. This study shows that a PDP can be an effective starting point for teacher learning regarding inclusive STEM teaching. It also illuminates possible enablers (e.g., fostering language awareness) or hinderers (e.g., teachers’ limited STEM knowledge) to be considered in future PDP design.
LINK
Inclusive research practices can lead to progress towards an inclusive society. With this study, we aimed to gain insight into dilemmas and catalysing processes within the long-term collaboration of an inclusive research duo: one non-academic researcher who lives with the label of intellectual disabilities and visual impairment, and one academic researcher. Both researchers kept personal diaries about their collaboration process. Inductive thematic analysis, individually and as a group of authors, was employed. Our findings reveal six necessary conditions for diversity-sensitive work in inclusive research: (a) experiencing belonging within the research group, (b) empowering people in a team through growing self-awareness and competence-building, (c) having room for reflection and searching for various ways of communication, (d) sharing power and ownership of research processes, (e) having enough time to foster the above conditions, and (f) joining in a mutual engagement in accommodating vulnerability in dialogue and collaborative work. Awareness of stigma-related issues and the risk of tokenism is also required.
LINK
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.
This project addresses the fundamental societal problem that encryption as a technique is available since decades, but has never been widely adopted, mostly because it is too difficult or cumbersome to use for the public at large. PGP illustrates this point well: it is difficult to set-up and use, mainly because of challenges in cryptographic key management. At the same time, the need for encryption has only been growing over the years, and has become an urgent problem with stringent requirements – for instance for electronic communication between doctors and patients – in the General Data Protection Regulation (GDPR) and with systematic mass surveillance activities of internationally operating intelligence agencies. The interdisciplinary project "Encryption for all" addresses this fundamental problem via a combination of cryptographic design and user experience design. On the cryptographic side it develops identity-based and attribute-based encryption on top of the attribute-based infrastructure provided by the existing IRMA-identity platform. Identity-based encryption (IBE) is a scientifically well-established technique, which addresses the key management problem in an elegant manner, but IBE has found limited application so far. In this project it will be developed to a practically usable level, exploiting the existing IRMA platform for identification and retrieval of private keys. Attribute-based encryption (ABE) has not reached the same level of maturity yet as IBE, and will be a topic of further research in this project, since it opens up attractive new applications: like a teacher encrypting for her students only, or a company encrypting for all employees with a certain role in the company. On the user experience design side, efforts will be focused on making these encryption techniques really usable (i.e., easy to use, effective, efficient, error resistant) for everyone (e.g., also for people with disabilities or limited digital skills). To do so, an iterative, human-centred and inclusive design approach will be adopted. On a fundamental level, scientific questions will be addressed, such as how to promote the use of security and privacy-enhancing technologies through design, and whether and how usability and accessibility affect the acceptance and use of encryption tools. Here, theories of nudging and boosting and the unified theory of technology acceptance and use (known as UTAUT) will serve as a theoretical basis. On a more applied level, standards like ISO 9241-11 on usability and ISO 9241-220 on the human-centred design process will serve as a guideline. Amongst others, interface designs will be developed and focus groups, participatory design sessions, expert reviews and usability evaluations with potential users of various ages and backgrounds will be conducted, in a user experience and observation laboratory available at HAN University of Applied Sciences. In addition to meeting usability goals, ensuring that the developed encryption techniques also meet national and international accessibility standards will be a particular point of focus. With respect to usability and accessibility, the project will build on the (limited) usability design experiences with the mobile IRMA application.
The eleven Universities forming the KreativEU consortium agreed to the common goal of establishing a fully European University, that places the creative potential derived from Europe’s cultural heritage at the heart of its teaching, research and knowledge transfer activities. Committing to a long-term institutional, structural and strategic cooperation the partners will jointly implement an ambitious yet inclusive vision for transforming the study of culture, identity, memory and heritage for the benefit of society. Building upon this strong foundation, KreativEU will provide innovative concepts, methods, and solutions to address both current and future challenges, contributing to a sustainable and harmonious future for communities and the environment alike. KreativEU recognizes the inseparable interconnection of tangible and intangible cultural heritage, as well as the interwoven nature of local and national traditions, crafts, cultural practices, and folklore. The alliance is dedicated to formulating cutting-edge educational and research programmes that reevaluate these elements and their associated ecological surroundings, the lived environment, especially in the context of the digital age. This ecocultural vision serves as the foundational principle guiding KreativEU's efforts, ensuring that a new generation of EU citizens working together across cultures, borders, languages, sectors and disciplines will be educated. Students from the KreativEU are expected to be leaders of change and enablers of societal transformation.To reach this vision, the KreativEU Alliance will work towards the completion of 8 work packages (WP1 - Governance and Management; WP2 - KreativEU Education; WP3 - KreativEU Research; WP4 - KreativEU Culture with and for society; WP5 - KreativEU Knowledge-creation and design network on Smart Sustainability WP6 - KreativEU Heritage European campus; WP7 - KreativEU Mobility; WP8 - Communication and Dissemination).Collaborative partners:Instituto Politécnico de Tomar, Escola Superior de Gestão de Tomar, D.A. Tsenov Academy of Economics, Johoceska Univerzita V Ceskych Budejovicich, Universita Degli Studi di Camerino, Universitaet Greifswald, Pilitechnika Opolska, Universitatae Valahia Targoviste, Trnavska Univerzita V Trnave, Sodestorns Hogskola, Adana Alparslan Turkes Bilim VE Teknoloji University