Purpose. This cross-sectional study investigates deficits and associations in muscle strength, 6-minute walking distance (6MWD), aerobic capacity (VO2peak), and physical activity (PA) in independent ambulatory children with lumbosacral spina bifida. Method. Twenty-tree children participated (13 boys, 10 girls). Mean age (SD): 10.4 (±3.1) years. Muscle strength (manual muscle testing and hand-held dynamometry), 6MWD, VO2peak (maximal exercise test on a treadmill), and PA (quantity and energy expenditure [EE]), were measured and compared with aged-matched reference values. Results. Strength of upper and lower extremity muscles, and VO2peak were significantly lower compared to reference values. Mean Z-scores ranged from -1.2 to -2.9 for muscle strength, and from -1.7 to -4.1 for VO2peak. EE ranged from 73 - 84% of predicted EE. 6MWD was significantly associated with muscle strength of hip abductors and foot dorsal flexors. VO2peak was significantly associated with strength of hip flexors, hip abductors, knee extensors, foot dorsal flexors, and calf muscles. Conclusions. These children have significantly reduced muscle strength, 6MWD, VO2peak and lower levels of PA, compared to reference values. VO2peak and 6MWD were significantly associated with muscle strength, especially with hip abductor and ankle muscles. Therefore, even in independent ambulating children training on endurance and muscle strength seems indicated.
Aim The aim of this study is to gain more insight into child and environmental factors that influence gross motor development (GMD) of healthy infants from birth until reaching the milestone of independent walking, based on longitudinal research. Background A systematic search was conducted using Scopus, PsycINFO, MEDLINE and CINAHL to identify studies from inception to February 2020. Studies that investigated the association between child or environmental factors and infant GMD using longitudinal measurements of infant GMD were eligible. Two independent reviewers extracted key information and assessed risk of bias of the selected studies, using the Quality in Prognostic Studies tool (QUIPS). Strength of evidence (strong, moderate, limited, conflicting and no evidence) for the factors identified was described according to a previously established classification. Results In 36 studies, six children and 11 environmental factors were identified. Five studies were categorized as having low risk of bias. Strong evidence was found for the association between birthweight and GMD in healthy full-term and preterm infants. Moderate evidence was found for associations between gestational age and GMD, and sleeping position and GMD. There was conflicting evidence for associations between twinning and GMD, and breastfeeding and GMD. No evidence was found for an association between maternal postpartum depression and GMD. Evidence for the association of other factors with GMD was classified as ‘limited’ because each of these factors was examined in only one longitudinal study. Conclusion Infant GMD appears associated with two child factors (birthweight and gestational age) and one environmental factor (sleeping position). For the other factors identified in this review, insufficient evidence for an association with GMD was found. For those factors that were examined in only one longitudinal study, and are therefore classified as having limited evidence, more research would be needed to reach a conclusion.
Smallholders are a substantial part of the oil palm sector and thus key to achieve more sustainable production. However, so far their yields remain below potential. The Roundtable on Sustainable Oil Palm (RSPO) aims to include smallholders in sustainability certification to strengthen rural livelihoods and reduce negative environmental impacts. This study aims to determine if and how certified smallholders perform differently from their non-certified counterparts in terms of management practices and yields, and to what extend this is related to RSPO certification.
MULTIFILE
The European creative visual industry is undergoing rapid technological development, demanding solid initiatives to maintain a competitive position in the marketplace. AVENUE, a pan-European network of Centres of Vocational Excellence, addresses this need through a collaboration of five independent significant ecosystems, each with a smart specialisation. AVENUE will conduct qualified industry-relevant research to assess, analyse, and conclude on the immediate need for professional training and educational development. The primary objective of AVENUE is to present opportunities for immediate professional and vocational training, while innovating teaching and learning methods in formal education, to empower students and professionals in content creation, entrepreneurship, and innovation, while supporting sustainability and healthy working environments. AVENUE will result in a systematised upgrade of workforce to address the demand for new skills arising from rapid technological development. Additionally, it will transform the formal education within the five participating VETs, making them able to transition from traditional artistic education to delivering skills, mindsets and technological competencies demanded by a commercial market. AVENUE facilitates mobility, networking and introduces a wide range of training formats that enable effective training within and across the five ecosystems. A significant portion of the online training is Open Access, allowing professionals from across Europe to upgrade their skills in various processes and disciplines. The result of AVENUE will be a deep-rooted partnership between five strong ecosystems, collaborating to elevate the European industry. More than 2000 professionals, employees, students, and young talents will benefit from relevant and immediate upgrading of competencies and skills, ensuring that the five European ecosystems remain at the forefront of innovation and competitiveness in the creative visual industry.
In the road transportation sector, CO2 emission target is set to reduce by at least 45% by 2030 as per the European Green Deal. Heavy Duty Vehicles contribute almost quarter of greenhouse gas emissions from road transport in Europe and drive majorly on fossil fuels. New emission restrictions creates a need for transition towards reduced emission targets. Also, increasing number of emission free zones within Europe, give rise to the need of hybridization within the truck and trailer community. Currently, in majority of the cases the trailer units do not possess any kind of drivetrain to support the truck. Trailers carry high loads, such that while accelerating, high power is needed. On the other hand, while braking the kinetic energy is lost, which otherwise could be recaptured. Thus, having a trailer with electric powertrain can support the truck during traction and can charge the battery during braking, helping in reducing the emissions and fuel consumption. Using the King-pin, the amount of support required by trailer can be determined, making it an independent trailer, thus requiring no modification on the truck. Given the heavy-duty environment in which the King-pin operates, the measurement design around it should be robust, compact and measure forces within certain accuracy level. Moreover, modification done to the King-pin is not apricated. These are also the challenges faced by V-Tron, a leading company in the field of services in mobility domain. The goal of this project is to design a smart King-pin, which is robust, compact and provides force component measurement within certain accuracy, to the independent e-trailer, without taking input from truck, and investigate the energy management system of the independent e-trailer to explore the charging options. As a result, this can help reduce the emissions and fuel consumption.
The European eel (Anguilla anguilla) is a delicacy fish and an integral part of the Dutch culinary history. However, the stock of adult eel has decreased significantly due to a precipitous recruitment of glass eel fall. This relates to multiple factors including obstacles in migration pathways, loss of habitat and chemical pollution. Consequently, Anguilla anguilla has become a critically endangered species and is protected under European legislation. One possible solution, explored on laboratory scale, is the captive reproduction of eels and growth of glass eel in aquaculture. A big challenge of this technique is the limiting aspect of possible nutrients for the eels in the larval stage, as the diet must be delivered in micrometric capsules (< 20 µm) with a high protein content. Such diets are not yet available on the market. Electrohydrodynamic atomization (EHDA) is a novel option to prepare a micro-diet suitable for eel larvae. EHDA is especially interesting for its narrow size distribution capabilities and for applications which require submicrometric sizes. This project aims to evaluate the use of EHDA to produce high protein content micrometric size capsules for feeding larval eels. If successful, this would assist in the captivity production of glass eel and to make the eel culture independent of wild catches, restoring the culinary market. The project will be conducted in two phases. Firstly, tests will be conducted to evaluate the necessary conditions of the capsules using EHDA. Subsequently, the obtained capsules will be tested as feed for eel larvae. The main objective is to favour the development of a more sustainable eel culture, regarding the possibilities of investigating the current fish in natura option and exchanging it for a captivity one.