Localization is a crucial skill in mobile robotics because the robot needs to make reasonable navigation decisions to complete its mission. Many approaches exist to implement localization, but artificial intelligence can be an interesting alternative to traditional localization techniques based on model calculations. This work proposes a machine learning approach to solve the localization problem in the RobotAtFactory 4.0 competition. The idea is to obtain the relative pose of an onboard camera with respect to fiducial markers (ArUcos) and then estimate the robot pose with machine learning. The approaches were validated in a simulation. Several algorithms were tested, and the best results were obtained by using Random Forest Regressor, with an error on the millimeter scale. The proposed solution presents results as high as the analytical approach for solving the localization problem in the RobotAtFactory 4.0 scenario, with the advantage of not requiring explicit knowledge of the exact positions of the fiducial markers, as in the analytical approach.
In mobile robotics, LASER scanners have a wide spectrum of indoor and outdoor applications, both in structured and unstructured environments, due to their accuracy and precision. Most works that use this sensor have their own data representation and their own case-specific modeling strategies, and no common formalism is adopted. To address this issue, this manuscript presents an analytical approach for the identification and localization of objects using 2D LiDARs. Our main contribution lies in formally defining LASER sensor measurements and their representation, the identification of objects, their main properties, and their location in a scene. We validate our proposal with experiments in generic semi-structured environments common in autonomous navigation, and we demonstrate its feasibility in multiple object detection and identification, strictly following its analytical representation. Finally, our proposal further encourages and facilitates the design, modeling, and implementation of other applications that use LASER scanners as a distance sensor.
Accurate localization in autonomous robots enables effective decision-making within their operating environment. Various methods have been developed to address this challenge, encompassing traditional techniques, fiducial marker utilization, and machine learning approaches. This work proposes a deep-learning solution employing Convolutional Neural Networks (CNN) to tackle the localization problem, specifically in the context of the RobotAtFactory 4.0 competition. The proposed approach leverages transfer learning from the pre-trained VGG16 model to capitalize on its existing knowledge. To validate the effectiveness of the approach, a simulated scenario was employed. The experimental results demonstrated an error within the millimeter scale and rapid response times in milliseconds. Notably, the presented approach offers several advantages, including a consistent model size regardless of the number of training images utilized and the elimination of the need to know the absolute positions of the fiducial markers.
In de automotive sector vindt veel onderzoek en ontwikkeling plaats op het gebied van autonome voertuigtechnologie. Dit resulteert in rijke open source software oplossingen voor besturing van robotvoertuigen. HAN heeft met haar Streetdrone voertuig reeds goede praktijkervaring met dergelijke software. Deze oplossingen richten zich op een Operational Design Domain dat uitgaat van de publieke verkeersinfrastructuur met daarbij de weggebruikers rondom het robotvoertuig. In de sectoren agrifood en smart industry is een groeiende behoefte aan automatisering van mobiele machinerie, versterkt door de actuele coronacrisis. Veel functionaliteit van bovengenoemde automotive software is inzetbaar voor mobiele robotica in deze sectoren. De toepassingen zijn enerzijds minder veeleisend - denk aan de meer gestructureerde omgeving, lagere snelheden en minder of geen ‘overige weggebruikers’ – en anderzijds heel specifiek als het gaat over routeplanning en (indoor) lokalisatie. Vanwege dit specifiek karakter is de bestaande software niet direct inzetbaar in deze sectoren. Het MKB in deze sectoren ervaart daarom een grote uitdaging om dergelijke complexe autonome functionaliteit beschikbaar te maken, zonder dat men kan voorbouwen een open, sectorspecifieke softwareoplossing. In Automotion willen de aangesloten partners vanuit bestaande kennis en ervaring tot een eerste integratie en demonstratie komen van een beschikbare automotive open source softwarebibliotheek, aangepast en specifiek ingezet op rijdende robots voor agrifood en smart industry, met focus ‘pickup and delivery’ scenario’s. Hierbij worden de aanpassingen - nieuwe en herschreven ‘boeken’ in de ‘bibliotheek’ - weer in open source gepubliceerd ter versterking van het MKB en het onderwijs. Parallel hieraan willen de partners ontdekken welke praktijkvragen uit dit proces voortvloeien en welke onderliggende kennislacunes in de toekomst moeten worden ingevuld. Via open workshops met uitnodigingen in diverse netwerken worden vele partijen uitgenodigd om gezamenlijk aan de hand van de opgedane ervaringen van gedachten te wisselen over actuele kennisvragen en mogelijke gezamenlijke toekomstige beantwoording daarvan.
Autonomous Guided Vehicles (AGV) worden hedendaags breed toegepast in verschillende sectoren als agri, logistiek en zorg. De taken die AGV’s verrichten zijn veelal gericht op het indoor transporteren van goederen en vereisen daarom een precieze en robuuste locatiebepaling. Indoor lokalisatie is een ‘key-technology’ daar het in allerlei toepassingsgebieden een fundamentele rol speelt. Tot op heden is er geen algemeen toepasbare techniek voorhanden en is het noodzakelijk om de omgeving uit te rusten met een op maat gemaakt lokalisatiesysteem wat duur, tijdrovend en inflexibel is. Een veelbelovende techniek is Magnetic-Simulataneous-Localisation-And-Mapping (MagSLAM). Deze techniek is berust op een verstoord aardmagnetisch veld door de aanwezigheid van vele ‘indoor’ ferromagnetische structuren. Deze verstoringen zijn specifiek voor de plek binnen het gebouw en zodoende als informatiebron gezien kunnen worden. Deze wijze biedt een aantal fundamentele voordelen ten opzichte van camera, radio of tag gebaseerde lokalisatiesystemen. Het doel van dit KIEM-project is een onderzoek naar de vraag in hoeverre we het magnetisch veld als informatieprovider kunnen gebruiken om het lokalisatievraagstuk voor AGV’s te kunnen helpen. De belangrijkste onderzoekvraag daarbij is “Hoe kunnen we de MagSLAM-technologie opwerken en inpassen in een AGV-systeem?” Daarbij rekening houdend met uitdagingen als kalibratie, fusie van sensordata (bijvoorbeeld odometrie) en het robuust zijn voor grote inductiestromen (bijvoorbeeld motoren en laadcircuits). Saxion en haar partners zetten zich de komende jaren in op de sleuteltechnologieën voor robotica als perception, navigation, cognition en artificial-intelligence welke allen integraal onderdeel vormen in dit KIEM project. Het project zal uit 4 fases bestaan: allereerst een inventarisatie van huidige MagSLAM-algoritmiek en AGVpositioneringssystemen (IST), een systeem- en gebruikerseisen onderzoek (SOLL) en tenslotte een analyse om de technologie op te werken en te passen (GAP).