In case of induced seismicity, expectations from a structural monitoring system are different than in the case of natural seismicity. In this paper, monitoring results of a historical building in Groningen (Netherlands) in case of induced seismicity has been presented. Results of the monitoring, particularities of the monitoring in case of induced earthquakes, as well as the usefulness and need of various monitoring systems for similar cases are discussed. Weak soil properties dominate the structural response in the region; thus, the ground water monitoring as well as the interaction of soil movements with the structural response has also been scrutinized. The proposed study could be effectively used to monitor historical structures subjected to induced seismicity and provide useful information to asset owners to classify the structural health condition of structures in their care.It was shown that the in-plane cracks at the building would normally not be expected in this structure during small induced earthquakes happening in Groningen. One explanation provided here is that the soil parameters, such as shrinking of water-sensitive soil layers, in combination with small earthquakes, may cause settlements. The soil effects may superimpose with the earthquake effects eventually causing small cracks and damage.
DOCUMENT
This paper aims to quantify the evolution of damage in masonry walls under induced seismicity. A damage index equation, which is a function of the evolution of shear slippage and opening of the mortar joints, as well as of the drift ratio of masonry walls, was proposed herein. Initially, a dataset of experimental tests from in-plane quasi-static and cyclic tests on masonry walls was considered. The experimentally obtained crack patterns were investigated and their correlation with damage propagation was studied. Using a software based on the Distinct Element Method, a numerical model was developed and validated against full-scale experimental tests obtained from the literature. Wall panels representing common typologies of house façades of unreinforced masonry buildings in Northern Europe i.e. near the Groningen gas field in the Netherlands, were numerically investigated. The accumulated damage within the seismic response of the masonry walls was investigated by means of representative harmonic load excitations and an incremental dynamic analysis based on induced seismicity records from Groningen region. The ability of this index to capture different damage situations is demonstrated. The proposed methodology could also be applied to quantify damage and accumulation in masonry during strong earthquakes and aftershocks too.
DOCUMENT
This paper aims to quantify the cumulative damage of unreinforced masonry (URM) subjected to induced seismicity. A numerical model based on discrete element method (DEM) has been develop and was able to represented masonry wall panels with and without openings; which are common typologies of domestic houses in the Groningen gas field in the Netherlands. Within DEM, masonry units were represented as a series of discrete blocks bonded together with zero-thickness interfaces, representing mortar, which can open and close according to the stresses applied on them. Initially, the numerical model has been validated against the experimental data reported in the literature. It was assumed that the bricks would exhibit linear stress-strain behaviour and that opening and slip along the mortar joints would be the predominant failure mechanism. Then, accumulated damage within the seismic response of the masonry walls investigated by means of harmonic load excitations representative of the acceleration time histories recorded during induced seismicity events that occurred in Groningen, the Netherlands.
DOCUMENT
''Heritage buildings are often subjected to loading conditions that they were not exposed to in their earlier life span. Induced earthquakes in non-seismic regions caused by energy exploitation activities, or strains in the ground that are caused by the climate changes, are new phenomena that alter the usual loading situations for historical buildings.In this paper, monitoring results of a historical building in Groningen (Netherlands) in case of induced seismicity as well as climate change effects has been presented. Long-term monitoring results, detected cracks and relevance of the monitoring data are discussed. In the special case of Groningen, weak and agricultural soil properties dominate the structural response in the region. The gas extraction activities caused a soil subsidence in the giant Groningen Gas Field, resulting decameters of settlement in the entire area, thus an increase of the ground water level in respect to the ground surface. This is the reason why the heritage structures in the region are more vulnerable to soil-water-foundation interactions caused by climate change as compared to the time these heritage structures were constructed. The ground water monitoring as well as the interaction of soil movements with the structural response become important. The study presented here suggests ways on how to effectively monitor historical structures subjected to induced seismicity as well as harsh climate effects at the same time.It was shown here that the newly developed cracks on the structure were detected in a very narrow time window, coinciding with extreme drought and a small induced earthquake at the same time. One explanation provided here is that the soil parameters, such as shrinking of water-sensitive soil layers, in combination with small earthquakes, may cause settlements. The soil effects may superimpose with the earthquake effects eventually causing small cracks and damage. The effects of the climate change on historical buildings is rather serious, and structures on similar soil conditions around the world would need detailed monitoring of not only the structure itself but also the soil-foundation and ground water conditions.''
DOCUMENT
DOCUMENT
The majority of houses in the Groningen gas field region, the largest in Europe, consist of unreinforced masonry material. Because of their particular characteristics (cavity walls of different material, large openings, limited bearing walls in one direction, etc.) these houses are exceptionally vulnerable to shallow induced earthquakes, frequently occurring in the region during the last decade. Raised by the damage incurred in the Groningen buildings due to induced earthquakes, the question whether the small and sometimes invisible plastic deformations prior to a major earthquake affect the overall final response becomes of high importance as its answer is associated with legal liability and consequences due to the damage-claim procedures employed in the region. This paper presents, for the first time, evidence of cumulative damage from available experimental and numerical data reported in the literature. Furthermore, the available modelling tools are scrutinized in terms of their pros and cons in modelling cumulative damage in masonry. Results of full-scale shake-table tests, cyclic wall tests, complex 3D nonlinear time-history analyses, single degree of freedom (SDOF) analyses and finally wall element analyses under periodic dynamic loading have been used for better explaining the phenomenon. It was concluded that a user intervention is needed for most of the SDOF modelling tools if cumulative damage is to be modelled. Furthermore, the results of the cumulative damage in SDOF models are sensitive to the degradation parameters, which require calibration against experimental data. The overall results of numerical models, such as SDOF residual displacement or floor lateral displacements, may be misleading in understanding the damage accumulation. On the other hand, detailed discrete-element modelling is found to be computationally expensive but more consistent in terms of providing insights in real damage accumulation.
DOCUMENT
DOCUMENT
De publicatielijst bevat alle publicaties waar Harmen Bijwaard aan bijgedragen heeft in de periode 1998 - 2013
DOCUMENT
Fraeylemaborg is a noble house in an earthquake-stricken area of the Netherlands due to the induced seismicity events in the region. The structure is located in the middle of the town of Slochteren which gave its name to the largest gas field in the world upon its discovery in 1959. The gas extraction has caused small-magnitude shallow earthquakes during the last decade, damaging not only the residential inventory but also the historical structures in the area. The main building of Fraeylemaborg sits on an artificial island surrounded by water channels, rendering the problem of earthquake response even more complicated. A small part of the main structure on the island was built in the 14th century, while the construction of additional parts and morphological alterations had taken place until the 18th century. The structure has been subjected to several small magnitude earthquakes causing damages on the load bearing system. An extensive renovation and repair of damages took place in recent years, however the latest seismic events imposed again damage to the structure. This paper presents a project of monitoring, assessment and diagnosis of problems for the Fraeylemaborg, the most important “borg” of the region, underlining the particularities of the induced seismicity problem. The FE model has been calibrated by using ambient vibration tests. Combination of earthquake and soil settlement loads have been applied on the calibrated model. The paper develops scenarios that help in explaining the reasons behind the damages on this structure during the recent shallow and low-magnitude induced seismicity earthquakes.
LINK
Groningen gas field is the largest on-land gas resource in the world and is beingexploited since 1963. There are damaging earthquakes, the largest of which was 3.6 magnitude. The recursive induced earthquakes are often blamed for triggering the structural damages in thousands of houses in the area. A damage claim procedure takes place after each significantly felt earthquake. The liability of the exploiting company is related to the damages and the engineering firms and experts are asked to correlate the claimed damages with a past earthquake. Structures in the region present high vulnerabilities to the lateral forces, soilproperties are quite unfavourable for seismic resistance, and structural damages are present even without earthquakes. This situation creates a dispute area where one can claim that most structures in the region were already damaged because of the fact that the soil is soft, the ground water table oscillates, and structures are vulnerable to external conditions anyhow and deteriorate in time, which can be the main cause of such structural damages. This ambiguity of damage vs earthquake correlation is one of the main sources of the public unrest in the area up until today. This study presents the perspective of people in the region in terms of liveability and the social acceptance of earthquakes in their lives. An attempt has been made to translate these social effects and expectations into structural performance metrics for ordinary houses in the region. A new seismic design and assessment approach, called Comfort Level Earthquake (CLE) has been proposed.
DOCUMENT