In Groningen, the Netherlands, induced earthquakes occur in a relatively densely populated area, the so-called Groningen gas field. Many houses and other buildings have been facing damage, from minor cracks to severe damage. The gas extraction company (NAM, a joint venture of Shell and Exxon Mobil) is held responsible for the earthquakes and has a legal liability to compensate for the damage. In addition to damage, several houses in the area are thought to be unsafe (not allowing occupants to leave their houses alive in case of a major earthquake). Both NAM and the Dutch government play a crucial role in the gas problems; where NAM is responsible for damage, the government has to guarantee citizens’ safety. Government has given orders to develop a strengthening operation for thousands houses.For many inhabitants, the practice of damage repair and strengthening has not been very effective and satisfying. First, the system of damage compensation, is neither simple nor expeditious; many citizens experience long waiting times, arbitrariness in causality and damage judgements and, as a result, unfair treatments. Second, after plans had been launched to inspect and eventually strengthen thousands of houses, the Minister decided to gradually reduce gas extraction. Immediately after that, he also decided to pause the intended strengthening operation, leaving many inhabitants in uncertainty about the current safety of their houses. In short, Groningen citizens don’t feel taken seriously by NAM, government and executing agencies, they are dissatisfied with damage settlements and their confidence in private (oil/gas companies) and public parties (government) has reached an all-time low. This situation has turned out to be very obstinate and difficult to turn. Our statement is that the architecture of the damage and strengthening operation is based on a systematic flaw. Although several minor changes have been made in the damage settlement and strengthening system, they have been limited to executing agencies and are not substantial. Therefore it is argued that, unless this structural flaw is being solved, the Netherlands will stay confronted with Groningen citizens whose trust in government is a far cry and will eventually lead to feelings of alienation.
DOCUMENT
The majority of houses in the Groningen gas field region, the largest in Europe, consist of unreinforced masonry material. Because of their particular characteristics (cavity walls of different material, large openings, limited bearing walls in one direction, etc.) these houses are exceptionally vulnerable to shallow induced earthquakes, frequently occurring in the region during the last decade. Raised by the damage incurred in the Groningen buildings due to induced earthquakes, the question whether the small and sometimes invisible plastic deformations prior to a major earthquake affect the overall final response becomes of high importance as its answer is associated with legal liability and consequences due to the damage-claim procedures employed in the region. This paper presents, for the first time, evidence of cumulative damage from available experimental and numerical data reported in the literature. Furthermore, the available modelling tools are scrutinized in terms of their pros and cons in modelling cumulative damage in masonry. Results of full-scale shake-table tests, cyclic wall tests, complex 3D nonlinear time-history analyses, single degree of freedom (SDOF) analyses and finally wall element analyses under periodic dynamic loading have been used for better explaining the phenomenon. It was concluded that a user intervention is needed for most of the SDOF modelling tools if cumulative damage is to be modelled. Furthermore, the results of the cumulative damage in SDOF models are sensitive to the degradation parameters, which require calibration against experimental data. The overall results of numerical models, such as SDOF residual displacement or floor lateral displacements, may be misleading in understanding the damage accumulation. On the other hand, detailed discrete-element modelling is found to be computationally expensive but more consistent in terms of providing insights in real damage accumulation.
DOCUMENT
Groningen gas field is the largest on-land gas resource in the world and is beingexploited since 1963. There are damaging earthquakes, the largest of which was 3.6 magnitude. The recursive induced earthquakes are often blamed for triggering the structural damages in thousands of houses in the area. A damage claim procedure takes place after each significantly felt earthquake. The liability of the exploiting company is related to the damages and the engineering firms and experts are asked to correlate the claimed damages with a past earthquake. Structures in the region present high vulnerabilities to the lateral forces, soilproperties are quite unfavourable for seismic resistance, and structural damages are present even without earthquakes. This situation creates a dispute area where one can claim that most structures in the region were already damaged because of the fact that the soil is soft, the ground water table oscillates, and structures are vulnerable to external conditions anyhow and deteriorate in time, which can be the main cause of such structural damages. This ambiguity of damage vs earthquake correlation is one of the main sources of the public unrest in the area up until today. This study presents the perspective of people in the region in terms of liveability and the social acceptance of earthquakes in their lives. An attempt has been made to translate these social effects and expectations into structural performance metrics for ordinary houses in the region. A new seismic design and assessment approach, called Comfort Level Earthquake (CLE) has been proposed.
DOCUMENT