The European Commission aims for a full circular economy (CE), an economy that aims to reuse all resources in 2050. CE is a promising way to increase welfare and wellbeing while decreasing environmental footprints. Industrial symbiosis, in which companies exchange residuals for resource efficiency, is essential to the circular transition. However, many companies are hesitant to implement business models for industrial symbiosis because of the various roles, stakes, opinions, and resulting uncertainties for business continuity.This dissertation supports researchers, professionals, and students in understanding and shaping circular business models for industrial symbiosis networks through collaborative modelling and simulation methods. Three theoretical perspectives, design science research, complex adaptive socio-technical systems, and circular business model innovation, shed light on designing business models for industrial symbiosis. A serious game and agent-based models were developed in multiple case studies with researchers, practitioners, and students. These were then used to design circular business models and explore their efficacy under uncertain conditions, such as various behavioural intentions of potential partners in diverse natural and societal contexts.This thesis advances business model design and experimentation by integrated simulation of social and technical aspects of industrial symbiosis. Furthermore, the research shows how simulations facilitate learning processes in designing circular business models. Ultimately, the thesis equips researchers, practitioners, and students with knowledge, tools, and methods to shape a circular economy.
DOCUMENT
Within the profile Technical Information Technology (ICT Department) the most important specializations are Embedded Software and Industrial Automation. About half of the Technical Information curriculum consists of learning modules, the other half is organized in projects. The whole study lasts four years. After two-and-a-half year students choose a specialization. Before the choice is made students have several occasions in which they learn something about the possible fields of specialization. In the first and second year there are two modules about Industrial Automation. First there is a module on actuators, sensors and interfacing, later a module on production systems. Finally there is an Industrial Automation project. In this project groups of students get the assignment to develop the control for a scale model flexible automation cell or to develop a monitoring system for this cell. In the last year of their studies students participate in a larger Industrial Automation project, often with an assignment from Industry. Here also the possibility exists to join multidisciplinary projects (IPD; integrated product development).
DOCUMENT
The Internet is changing the way we organize work. It is shifting the requirement for what we call the ‘schedule push’ and the hierarchical organisation that it implies, and therefore it is removing the type of control that is conventionally used to match resources to tasks, and customer demand to supplies and services. Organisational hierarchies have become too expensive to sustain, and in many cases their style of coordination is simply no longer necessary. The cost complexity of the industrial complex starts to outweigh the benefits and the Internet is making it redundant.
MULTIFILE
In this proposal, a consortium of knowledge institutes (wo, hbo) and industry aims to carry out the chemical re/upcycling of polyamides and polyurethanes by means of an ammonolysis, a depolymerisation reaction using ammonia (NH3). The products obtained are then purified from impurities and by-products, and in the case of polyurethanes, the amines obtained are reused for resynthesis of the polymer. In the depolymerisation of polyamides, the purified amides are converted to the corresponding amines by (in situ) hydrogenation or a Hofmann rearrangement, thereby forming new sources of amine. Alternatively, the amides are hydrolysed toward the corresponding carboxylic acids and reused in the repolymerisation towards polyamides. The above cycles are particularly suitable for end-of-life plastic streams from sorting installations that are not suitable for mechanical/chemical recycling. Any loss of material is compensated for by synthesis of amines from (mixtures of) end-of-life plastics and biomass (organic waste streams) and from end-of-life polyesters (ammonolysis). The ammonia required for depolymerisation can be synthesised from green hydrogen (Haber-Bosch process).By closing carbon cycles (high carbon efficiency) and supplementing the amines needed for the chain from biomass and end-of-life plastics, a significant CO2 saving is achieved as well as reduction in material input and waste. The research will focus on a number of specific industrially relevant cases/chains and will result in economically, ecologically (including safety) and socially acceptable routes for recycling polyamides and polyurethanes. Commercialisation of the results obtained are foreseen by the companies involved (a.o. Teijin and Covestro). Furthermore, as our project will result in a wide variety of new and drop-in (di)amines from sustainable sources, it will increase the attractiveness to use these sustainable monomers for currently prepared and new polyamides and polyurethanes. Also other market applications (pharma, fine chemicals, coatings, electronics, etc.) are foreseen for the sustainable amines synthesized within our proposition.
Drones have been verified as the camera of 2024 due to the enormous exponential growth in terms of the relevant technologies and applications such as smart agriculture, transportation, inspection, logistics, surveillance and interaction. Therefore, the commercial solutions to deploy drones in different working places have become a crucial demand for companies. Warehouses are one of the most promising industrial domains to utilize drones to automate different operations such as inventory scanning, goods transportation to the delivery lines, area monitoring on demand and so on. On the other hands, deploying drones (or even mobile robots) in such challenging environment needs to enable accurate state estimation in terms of position and orientation to allow autonomous navigation. This is because GPS signals are not available in warehouses due to the obstruction by the closed-sky areas and the signal deflection by structures. Vision-based positioning systems are the most promising techniques to achieve reliable position estimation in indoor environments. This is because of using low-cost sensors (cameras), the utilization of dense environmental features and the possibilities to operate in indoor/outdoor areas. Therefore, this proposal aims to address a crucial question for industrial applications with our industrial partners to explore limitations and develop solutions towards robust state estimation of drones in challenging environments such as warehouses and greenhouses. The results of this project will be used as the baseline to develop other navigation technologies towards full autonomous deployment of drones such as mapping, localization, docking and maneuvering to safely deploy drones in GPS-denied areas.
Denim Democracy from the Alliance for Responsible Denim (ARD) is an interactive exhibition that celebrates the journey and learning of ARD members, educates visitors about sustainable denim and highlights how companies collaborate together to achieve results. Through sight, sound and tactile sensations, the visitor experiences and fully engages sustainable denim production. The exhibition launches in October 2018 in Amsterdam and travels to key venues and locations in the Netherlands until April 2019. As consumers, we love denim but the denim industry, like other sub-sectors in the textile, apparel and footwear industries, faces many complex sustainability challenges and has been criticized for its polluting and hazardous production practices. The Alliance for Responsible Denim project brought leading denim brands, suppliers and stakeholders together to collectively address these issues and take initial steps towards improving the ecological sustainability impact of denim production. Sustainability challenges are considered very complex and economically undesirable for individual companies to address alone. In denim, small and medium sized denim firms face specific challenges, such as lower economies of scale and lower buying power to affect change in practices. There is great benefit in combining denim companies' resources and knowledge so that collective experimentation and learning can lift the sustainability standards of the industry and lead to the development of common standards and benchmarks on a scale that matters. If meaningful, transformative industrial change is to be made, then it calls for collaboration between denim industry stakeholders that goes beyond supplier-buyer relations and includes horizontal value chain collaboration of competing large and small denim brands. However collaboration between organizations, and especially between competitors, is highly complex and prone to failure. The research behind the Alliance for Responsible Denim project asked a central research question: how do competitors effectively collaborate together to create common, industry standards on resource use and benchmarks for improved ecological sustainability? To answer this question, we used a mixed-method, action research approach. The Alliance for Responsible Denim project mobilized and facilitated denim brands to collectively identify ways to reduce the use of water and chemicals in denim production and then aided them to implement these practices individually in their respective firms.