The aim of this study was to understand the motives for using the Internet, and its associations with users' attitudes, social values, and relational involvement. Also, this study attempted to crossculturally compare the difference in the pattern of motives and the associations among three countries ' the US, the Netherlands, and S. Korea. The design of methods was based on examination and revision of uses and gratification approach toward Internet users. Findings from factor analysis revealed that information seeking and Self-Improvement were the dominant and common reasons for using the Internet across three countries. The differences in the composition of motives in each country were also reported. Strong correlations across countries were found between all the motives and satisfaction of the Internet. Expectation and positive evaluation of the Internet were also important attitudes associated with Internet use motives. Postmaterialist value showed strong association with motives of information seeking and Self-Improvement. Community involvement was significantly associated with Internet use motives in Korean users.
Introduction: Success of e-health relies on the extent to which the related technology, such as the electronic device, is accepted by its users. However, there has been limited research on the patients’ perspective on use of e-health-related technology in rehabilitation care. Objective: To explore the usage of common electronic devices among rehabilitation patients with access to email and investigate their preferences regarding their usage in rehabilitation. Methods: Adult patients who were admitted for inpatient and/or outpatient rehabilitation and were registered with an email address were invited to complete an electronic questionnaire regarding current and preferred use of information and communication technologies in rehabilitation care. Results: 190 out of 714 invited patients completed the questionnaire, 94 (49%) female, mean age 49 years (SD 16). 149 patients (78%) used one or more devices every day, with the most frequently used devices were: PC/laptop (93%), smartphone (57%) and tablet (47%). Patients mostly preferred to use technology for contact with health professionals (mean 3.15, SD 0.79), followed by access to their personal record (mean 3.09, SD 0.78) and scheduling appointments with health professionals (mean 3.07, SD 0.85). Conclusion: Most patients in rehabilitation used one or more devices almost every day and wish to use these devices in rehabilitation. https://doi.org/10.1080/17483107.2017.1358302
MULTIFILE
When it comes to hard to solve problems, the significance of situational knowledge construction and network coordination must not be underrated. Professional deliberation is directed toward understanding, acting and analysis. We need smart and flexible ways to direct systems information from practice to network reflection, and to guide results from network consultation to practice. This article presents a case study proposal, as follow-up to a recent dissertation about online simulation gaming for youth care network exchange (Van Haaster, 2014).
Intelligent technology in automotive has a disrupting impact on the way modern automobiles are being developed. New technology not only has brought complexity to already existing information in the car (digitization of driver instruments) but also brings new external information to the driver on how to optimize the driving style amongst others from the perspective of communicating with infrastructures (Vehicle to Infrastructure communication (V2I)). The amount of information that a driver has to process in modern vehicles is increasing rapidly due to the introduction of multiple displays and new external information sources. An information overload lies awaiting, yet current Human Machine Interface (HMI) designs and the corresponding legal frameworks lag behind. Currently, many initiatives (Pratijkproef Amsterdam, Concorda) are being developed with respect to V2I, amongst others with Rijkswaterstaat, North Holland and Brabant. In these initiatives, SME’s, like V-Tron, focus on the development of specific V2I hardware. Yet in the field of HMI’s these SME’s need universities (HAN University of Applied Science, Rhine Waal University of Applied Science) and industrial designers (Yellow Chess) to help them with design guidelines and concept HMI’s. We propose to develop first guidelines on possible new human-machine interfaces. Additionally, we will show the advantages of HMI’s that go further than current legal requirements. Therefore, this research will focus on design guidelines averting the information overload. We show two HMI’s that combine regular driver information with V2I information of a Green Light Optimized Speed Advise (GLOSA) use case. The HMI’s will be evaluated on a high level (focus groups and a small simulator study). The KIEM results in two publications. In a plenary meeting with experts, the guidelines and the limitations of current legal requirements will be discussed. The KIEM will lead to a new consortium to extend the research.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.
An efficient and sustainable logistics process is essential for logistics companies to remain competitive and to manage the dynamic demands and service requirements. Specifically, the first- and last-mile hub-to-hub (inter) logistics is one of the most difficult operations to manage due to low volumes, repetitive operation and short-distance transport, and relatively high waiting times. With the advancements in Industry 4.0 technologies (Internet of Things, Big Data, Cloud computing, Artificial Intelligence), the consortium partners expect that the intelligent and connected technology is a viable solution to improve operational efficiency, coordination, and sustainability of this inter-hub logistics. Despite the promising potential, the impact of technology on inter- and intra-hub (inside hub) logistics operations (such as transportation, communication, and planning) is not well-established. The focus of STEERS is to explore the real-life challenges associated with the logistics operation in a small-to-medium size logistics hub and investigate the potential of intelligent and connected technology to address such challenges. This project will investigate the requirements for the application of automated vehicles in inter-hub transportation and simultaneously explore the potential of intelligent inter-hub corridors. Additionally, inter-hub communications will also provide the opportunity to explore their potential impact on the planning and coordination of intra-hub activities, with an explicit focus on the changing role of human planners. It combines the knowledge of education and research institutes (Hogeschool van Arnhem en Nijmegen, The University of Twente and Hogeschool Rotterdam), logistics industry partners (Bolk Container Transport and Combi Terminal Twente) and public institutes (XL Business Park, Port of Twente and Regio Twente). The insights obtained in this exploratory study will serve as a foundation for the follow-up RAAK-PRO project, in which real-world demonstrators will be developed and tested inside XL Business Park.