Deployment and management of environmental infrastructures, such as charging infrastructure for Electric Vehicles (EV), is a challenging task. For policy makers, it is particularly difficult to estimate the capacity of current deployed public charging infrastructure for a given EV user population. While data analysis of charging data has shown added value for monitoring EV systems, it is not valid to linearly extrapolate charging infrastructure performance when increasing population size.We developed a data-driven agent-based model that can explore future scenarios to identify non-trivial dynamics that may be caused by EV user interaction, such as competition or collaboration, and that may affect performance metrics. We validated the model by comparing EV user activity patterns in time and space.We performed stress tests on the 4 largest cities the Netherlands to explore the capacity of the existing charging network. Our results demonstrate that (i) a non-linear relation exists between system utilization and inconvenience even at the base case; (ii) from 2.5x current population, the occupancy of non-habitual charging increases at the expense of habitual users, leading to an expected decline of occupancy for habitual users; and (iii) from a ratio of 0.6 non-habitual users to habitual users competition effects intensify. For the infrastructure to which the stress test is applied, a ratio of approximately 0.6 may indicate a maximum allowed ratio that balances performance with inconvenience. For policy makers, this implies that when they see diminishing marginal performance of KPIs in their monitoring reports, they should be aware of potential exponential increase of inconvenience for EV users.
Since the first uptake of electric vehicles, policy makers are questioning how to rollout public charging infrastructure in an efficient manner, such that user convenience balances with costs of investment. In some metropolitan areas, the first phase of rollout has been passed, meaning an optimized deployment of future charging stations for electric vehicles (EVs) becomes important to improve the charging infrastructure and ensure customer satisfaction and sufficient service provision. Complex system literature shows that network vulnerability is an important metric, yet, charging infrastructure has not yet been a subject of these simulation models so far. This research, based on real-world data, provides a novel approach for improving the roll-out strategy of municipalities, by treating the charge infrastructure as a complex network of charging stations and defining vulnerability in respect to the availability of its surrounding charging stations within relevant walking distance.
Municipalities increasingly seek to include citizens in decision-making processes regarding local issues, such as urban planning. This paper presents a case study on using Virtual Reality (VR) in a process of civic participation in the redesign of a public park. The municipality included citizens in intensive co-design activities to create three designs for the park and engaged the neighbourhood community in co-decision, in the form of a ballot. Through the civic participatory process, we studied the effectiveness of using VR technology to engage the community in participating in the co-decision process. The three designs were presented using highly realistic 360˚ visualisations and the effects on engagement were compared between various devices: VR headsets, smartphones, tablets, and computers. Viewing the designs in 2D paper plans was also included in the comparison. The study included over 1300 respondents that participated in the ballot. A statistical analysis of the collected data shows that participants viewing the 360˚ rendered images with VR technology expressed a significantly higher engagement in the co-decision process than those using their computer at home or viewing 2D paper plans. The paper describes the complete participatory design process and the impact of the e-governance used on the target group as well as on the actors organizing the e-governance process. We discuss how the use of new technology and active presence of a voting-support team inspired citizens to participate in the co-creation process and how the investment in this procedure helped the local authorities to generate support for the plans and strengthen its relationship with the community. The use of realistic visualisations that can be easily assessed by citizens through user-friendly technology, enabled a large and diverse audience to participate. This resulted in greater visibility of municipal efforts to enhance the living environment of citizens and is therefore an important step in increased civic engagement in municipal policy-making and implementation.