In large organizations, innovation activities often take place in separate departments, centers, or studios. These departments aim to produce prototypes of solutions to the problems of operational business owners. However, too often these concepts remain in the prototype stage: they are never implemented and fall into what is popularly termed the Valley of Death. A design approach to innovation is presented as a solution to the problem. However, practice shows that teams that use design nevertheless encounter implementation challenges due to the larger infrastructure of the organization they are part of. This research aims to explore which organizational factors contribute to the Valley of Death during design innovation. An embedded multiple case study at a large heritage airline is applied. Four projects are analyzed to identify implementation challenges. A thematic data analysis reveals organizational design, departmental silos, and dissimilar innovation strategies contribute to the formation of, and encounters with, the Valley of Death. Arising resource-assignment challenges that result from these factors are also identified. Materialization, user-centeredness, and holistic problem framing are identified as design practices that mitigate encounters with the Valley of Death, thus leading to projects being fully realized. https://doi.org/10.1111/dmj.12052 LinkedIn: https://www.linkedin.com/in/christine-de-lille-8039372/
MULTIFILE
These are hard days for companies: they have to survive in a market that has been hit by a financial crisis. Many countries in Europe have severe problems trying to overcome this financial crisis. The main remedy applied by governments is to cut back on expenditure, but on the other hand it is said that it is important for a country, and especially for companies, to invest in innovation. These innovations should lead to innovative products that will lead to profitability turnovers for these companies and, as a consequence, improve the economic conditions in a country. Universities provide students with engineering competences, like develop innovation, with which they can show a higher degree of ability to answer complex questions such as how to become players in the market again. Teaching students to become more innovative engineers, Fontys University of Applied Sciences, Department of Engineering, has designed a curriculum in which students are educated in the competence innovation. An important element in the process of teaching innovation to students is the approach of inquiring into possibilities of patents. In the second semester of the first year, students can decide to join an innovative project called: ‘The invention project’. The basis of this project is that students are given the opportunity to create their own invention and with their previously acquired knowledge and skills they design, calculate, prototype and present their invention. In a research project, the experiences of students in this Invention Project have been analysed. The goal of this study was to understand what the success factors are for such a project. The basis of this inquiry is a questionnaire to identify the opinions of students. The research was carried out in the spring semester of 2012. In total 31 students were involved in this research. The results show that there was a high degree of student satisfaction about the Invention Project focused on innovation development. Success factors for this project in the first year of the curriculum were seen: 1 to work on own inventions, 2 development of student’s perception of the total product creation process and 3 to make students see the relevance of contacts with real professionals from industry and from the patent office in their own project. Improvements can be made by: 1 helping students more during the creativity stage in the project and 2 to coach them more on the aspect of engineering a successful invention of which they can be proud. This Invention project is a interesting with which collaborations with other universities can be set up.
DOCUMENT
Introduction: Retrospective studies suggest that a rapid initiation of treatment results in a better prognosis for patients in the emergency department. There could be a difference between the actual medication administration time and the documented time in the electronic health record. In this study, the difference between the observed medication administration time and documentation time was investigated. Patient and nurse characteristics were also tested for associations with observed time differences. Methods: In this prospective study, emergency nurses were followed by observers for a total of 3 months. Patient inclusion was divided over 2 time periods. The difference in the observed medication administration time and the corresponding electronic health record documentation time was measured. The association between patient/nurse characteristics and the difference in medication administration and documentation time was tested with a Spearman correlation or biserial correlation test. Results: In 34 observed patients, the median difference in administration and documentation time was 6.0 minutes (interquartile range 2.0-16.0). In 9 (26.5%) patients, the actual time of medication administration differed more than 15 minutes with the electronic health record documentation time. High temperature, lower saturation, oxygen-dependency, and high Modified Early Warning Score were all correlated with an increasing difference between administration and documentation times. Discussion: A difference between administration and documentation times of medication in the emergency department may be common, especially for more acute patients. This could bias, in part, previously reported time-to-treatment measurements from retrospective research designs, which should be kept in mind when outcomes of retrospective time-to-treatment studies are evaluated.
DOCUMENT
Students in Higher Music Education (HME) are not facilitated to develop both their artistic and academic musical competences. Conservatoires (professional education, or ‘HBO’) traditionally foster the development of musical craftsmanship, while university musicology departments (academic education, or ‘WO’) promote broader perspectives on music’s place in society. All the while, music professionals are increasingly required to combine musical and scholarly knowledge. Indeed, musicianship is more than performance, and musicology more than reflection—a robust musical practice requires people who are versed in both domains. It’s time our education mirrors this blended profession. This proposal entails collaborative projects between a conservatory and a university in two cities where musical performance and musicology equally thrive: Amsterdam (Conservatory and University of Amsterdam) and Utrecht (HKU Utrechts Conservatorium and Utrecht University). Each project will pilot a joint program of study, combining existing modules with newly developed ones. The feasibility of joint degrees will be explored: a combined bachelor’s degree in Amsterdam; and a combined master’s degree in Utrecht. The full innovation process will be translated to a transferable infrastructural model. For 125 students it will fuse praxis-based musical knowledge and skills, practice-led research and academic training. Beyond this, the partners will also use the Comenius funds as a springboard for collaboration between the two cities to enrich their respective BA and MA programs. In the end, the programme will diversify the educational possibilities for students of music in the Netherlands, and thereby increase their professional opportunities in today’s job market.
My research investigates the concept of permacomputing, a blend of the words permaculture and computing, as a potential field of convergence of technology, arts, environmental research and activism, and as a subject of future school curricula in art and design. This concept originated in online subcultures, and is currently restricted to creative coding communities. I study in what way permacomputing principles may be used to redefine how art and design education is taught. More generally, I want to research the potential of permacomputing as a critical, sustainable, and practical alternative to the way digital technology is being taught in art education, where students mostly rely on tools and techniques geared towards maximising productivity and mass consumption. This situation is at odds with goals for sustainable production and consumption. I want to research to what degree the concept of permacomputing can be broadened and applied to critically revised, sustainable ways of making computing part of art and design education and professional practice. This research will be embedded in the design curriculum of Willem de Kooning Academy, focused on redefining the role of artists and designers to contribute to future modes of sustainable organisation and production. It is aligned with Rotterdam University of Applied Sciences sectorplan masters VH, in particular managing and directing sustainable transitions. This research builds upon twenty years of experience in the creative industries. It is an attempt to generalise, consolidate, and structure methods and practices for sustainable art and design production experimented with while I was course director of a master programme at WdKA. Throughout the research I will be exchanging with peers and confirmed interested parties, a.o.: Het Nieuwe Instituut (NL), RUAS Creating 010 kenniscentrum (NL), Bergen Centre for Electronic Arts (NO), Mikrolabs (NO), Varia (NL), Media Arts department at RHU (UK), Media Studies at UvA (NL).
Client: European Parliament, Directorate General for Internal Policies, Policy Department B: Structural and Cohesion Policies, Transport and Tourism This analysis synthesizes the effects of information technology developments on tourism SMEs in the European Union. The effects were found to be profoundly disruptive to traditional business models of tourism information and distribution. Policy developments supporting research, education and facilitating change in tourism SMEs are called for.