The percentage of sports and leisure shoes sold worldwide is gradually increasing. However, consumers have little or no objective information on the mechanical properties of the shoes. A justified selection protocol of sports and leisure shoes based on static and dynamic shoe properties considering the intended use is essential. Today, commonly accepted dynamic test protocols for (sports) shoes do not exist. The development of an artificial parametric foot as part of an innovative robot gait simulator is a tool to objectify shoe properties independently from possible compensations encountered during assessment of test persons. This contribution discusses the development of an artificial foot enabling objective testing of the mechanical and functional properties of sports and leisure shoes.
Virtual training systems provide highly realistic training environments for police. This study assesses whether a pain stimulus can enhance the training responses and sense of the presence of these systems. Police officers (n = 219) were trained either with or without a pain stimulus in a 2D simulator (VirTra V-300) and a 3D virtual reality (VR) system. Two (training simulator) × 2 (pain stimulus) ANOVAs revealed a significant interaction effect for perceived stress (p =.010, ηp2 =.039). Post-hoc pairwise comparisons showed that VR provokes significantly higher levels of perceived stress compared to VirTra when no pain stimulus is used (p =.009). With a pain stimulus, VirTra training provokes significantly higher levels of perceived stress compared to VirTra training without a pain stimulus (p <.001). Sense of presence was unaffected by the pain stimulus in both training systems. Our results indicate that VR training appears sufficiently realistic without adding a pain stimulus. Practitioner summary: Virtual police training benefits from highly realistic training environments. This study found that adding a pain stimulus heightened perceived stress in a 2D simulator, whereas it influenced neither training responses nor sense of presence in a VR system. VR training appears sufficiently realistic without adding a pain stimulus.
Shared Vision Planning (SVP) is a collaborative approach to water (resource) management that combines three practices: (1) traditional water resources planning; (2) structured participation of stakeholders; (3) (collaborative) computer modeling and simulation. The authors argue that there are ample opportunities for learning and innovation in SVP when we look at it as a form of Policy Analysis (PA) in a multi-actor context. SVP faces three classic PA dilemmas: (1) the role of experts and scientific knowledge in policymaking; (2) The design and management of participatory and interactive planning processes; and (3) the (ab)use of computer models and simulations in (multi actor) policymaking. In dealing with these dilemmas, SVP can benefit from looking at the richness of PA methodology, such as for stakeholder analysis and process management. And it can innovate by incorporating some of the rapid developments now taking place in the field of (serious) gaming and simulation (S&G) for policy analysis. In return, the principles, methods, and case studies of SVP can significantly enhance how we perform PA for multi-actor water (resource) management.
There is increasing interest for the use of Virtual Reality (VR) in the field of sustainable transportation and urban development. Even though much has been said about the opportunities of using VR technology to enhance design and involve stakeholders in the process, implementations of VR technology are still limited. To bridge this gap, the urban intelligence team of NHTV Breda University of Applied Sciences developed CycleSPEX, a Virtual Reality (VR) simulator for cycling. CycleSpex enables researchers, planners and policy makers to shape a variety of scenarios around knowledge- and design questions and test their impact on users experiences and behaviour, in this case (potential) cyclists. The impact of infrastructure enhancements as well as changes in the surrounding built environment can be tested, analysed an evaluated. The main advantage for planners and policy makers is that the VR environment enables them to test scenarios ex-ante in a safe and controlled setting.“The key to a smart, healthy and safe urban environment lies in engaging mobility. Healthy cities are often characterized by high quality facilities for the active modes. But what contributes to a pleasant cycling experience? CycleSPEX helps us to understand the relations between cyclists on the move and (designed) urban environments”