The metabolic syndrome (MetS) comprises cardiometabolic risk factors frequently found in individuals with obesity. Guidelines to prevent or reverse MetS suggest limiting fat intake, however, lowering carbohydrate intake has gained attention too. The aim for this review was to determine to what extent either weight loss, reduction in caloric intake, or changes in macronutrient intake contribute to improvement in markers of MetS in persons with obesity without cardiometabolic disease. A meta-analysis was performed across a spectrum of studies applying low-carbohydrate (LC) and low-fat (LF) diets. PubMed searches yielded 17 articles describing 12 separate intervention studies assessing changes in MetS markers of persons with obesity assigned to LC (<40% energy from carbohydrates) or LF (<30% energy from fat) diets. Both diets could lead to weight loss and improve markers of MetS. Meta-regression revealed that weight loss most efficaciously reduced fasting glucose levels independent of macronutrient intake at the end of the study. Actual carbohydrate intake and actual fat intake at the end of the study, but not the percent changes in intake of these macronutrients, improved diastolic blood pressure and circulating triglyceride levels, without an effect of weight loss. The homeostatic model assessment of insulin resistance improved with both diets, whereas high-density lipoprotein cholesterol only improved in the LC diet, both irrespective of aforementioned factors. Remarkably, changes in caloric intake did not play a primary role in altering MetS markers. Taken together, these data suggest that, beyond the general effects of the LC and LF diet categories to improve MetS markers, there are also specific roles for weight loss, LC and HF intake, but not reduced caloric intake, that improve markers of MetS irrespective of diet categorization. On the basis of the results from this meta-analysis, guidelines to prevent MetS may need to be re-evaluated.
MULTIFILE
De relatie tussen fysieke activiteit en gezondheid is onomstotelijk vastgesteld. Zo kan fysieke activiteit onder andere ischaemische hart- en vaatziekten, dikke-darmkanker, hersenbloedingen, overgewicht en type 2 diabetes helpen voorkomen. Daarom is het schrikbarend hoe weinig mensen in de westerse maatschappij bewegen. De leeropdrachten van het lectoraat Fysieke Activiteit en Gezondheid zijn toegespitst op de maatschappelijke problematiek van bewegingsarmoede en de daarmee samenhangende gezondheidsproblemen. Deze luiden: - Wat zijn geschikte richtlijnen voor primaire en secundaire ziektepreventie door middel van fysieke activiteit? - Wat kan de rol zijn van het bewegingsonderwijs in het stimuleren van gezond bewegingsgedrag?
Rationale: The number of obese older adults with diabetes type 2 is increasing worldwide. Weight loss treatment in this group seems beneficial for cardio-metabolic and other health outcomes, but it might reduce muscle mass and bone mineral density (BMD). The association between obesity and BMD is controversial, and the role of muscle mass and dietary protein intake is not fully clear. This study explores the association between body weight, muscle mass, dietary protein intake, and physical activity level on BMD in obese older adults with diabetes type 2. Methods: For this cross-sectional analysis we used baseline data of a 13-week randomized trial evaluating the effect of a multi-modal intervention on muscle preservation and insulin sensitivity during a weight loss program in obese older adults (55-80y) with diabetes type 2 (PROBE). Body weight was measured using a calibrated scale (Life Measurement), appendicular lean mass (ALM) was used as a proxy for muscle mass and was measured by dual-energy X-ray absorptiometry (DXA, Hologic Discovery A), dietary protein intake was estimated by a 3-day food record, Physical Activity Level (PAL) was estimated by a 3-day activity record, and hip BMD was assessed by DXA. After determination of Pearson’s correlation coefficients for body weight, ALM, protein intake, and PAL with BMD, linear regression analysis was performed with significantly correlating determinants (body weight [kg], ALM [kg], protein intake [g/kg/d], and/or PAL [-]) and hip BMD (g/cm2) as outcome variable. Results: Mean age of the 122 included subjects was 67±6y, with a BMI of 33±4kg/m2. 65% of subjects were male. Body weight and ALM correlated significantly with BMD (r=0.34, p<0.001; r=0.43, p<0.001) whereas protein intake and PAL did not (r=0.02, p=0.84; r=0.005, p=0.95). Linear regression analysis with the two determinants body weight and ALM identified ALM as being significantly associated with BMD, whereas body weight was not. Beta for ALM was +0.011 g/cm2 (95% CI: 0.004 – 0.017; p<0.01), meaning that a 1 kg increase in ALM is associated with a +0.011 g/cm2 increase in BMD. Conclusion: In this explorative cross-sectional analysis appendicular muscle mass is positively associated with BMD, rather than body weight, protein intake, and physical activity level.