The project X-TEAM D2D (Extended ATM for Door-to-Door Travel) has been funded by SESAR JU in 2020 and completed its activities in 2022, pursuing and accomplishing the definition, development and initial assessment of a Concept of Operations (ConOps) for the seamless integration of ATM and air transport into an overall intermodal network, including other available transportation means (surface, water), to support the door-to-door connectivity, in up to 4 hours, between any location in Europe. The project addressed the ATM and air transport, including Urban Air Mobility (UAM), integration in the overall transport network serving urban and extended urban (up to regional level) mobility, specifically identifying and considering the transportation and passengers service scenarios expected for the near, medium and long-term future, i.e. for the project baseline (2025), intermediate (2035) and final (2050) time horizons. In this paper, the main outcomes from the project activities are summarized, with particular emphasis on the studies about the definition of future scenarios and use cases for the integration of the vertical transport with the surface transport towards integrated intermodal transport system and about identification of the barriers towards this goal. In addition, an outline is provided on the specific ConOps for the integration of ATM in intermodal transport infrastructure (i.e. the part of the overall ConOps devoted to integration of different transportation means) and on the specific ConOps for the integration of ATM in intermodal service to passengers (i.e. the specific component of the ConOps devoted to design of a unique service to passengers). Finally, the main outcomes are summarized from the validation of the proposed ConOps through dedicated simulations.
DOCUMENT
Seamless integration of air segment in the overall multimodal mobility chain is a key challenge to provide more efficient and sustainable transport services. Technology advances offer a unique opportunity to build a new generation of transport services able to match the evolving expectations and needs of society as a whole. In this context, the passenger-centric approach represents a method to inform the design of future mobility services, supporting quality of life, security and services to citizens traveling across Europe. Relying on the concepts of inclusive design, context of use and task analysis, in this article, we present a comprehensive methodological framework for the analysis of passenger characteristics to elicit features and requirements for future multimodal mobility services, including air leg, that are relevant from the perspective of passengers. The proposed methodology was applied to a series of specific use cases envisaged for three time horizons, 2025, 2035 and 2050, in the context of a European research project. Then, passenger-focused key performance indicators and related metrics were derived to be included in a validation step, with the aim of assessing the extent of benefit for passengers that can be achieved in the forecasted scenarios. The results of the study demonstrate the relevance of human variability in the design of public services, as well as the feasibility of personalized performance assessment of mobility services.
DOCUMENT
Predictive models and decision support toolsallow information sharing, common situational awarenessand real-time collaborative decision-making betweenairports and ground transport stakeholders. To supportthis general goal, IMHOTEP has developed a set of modelsable to anticipate the evolution of an airport’s passengerflows within the day of operations. This is to assess theoperational impact of different management measures onthe airport processes and the ground transport system. Twomodels covering the passenger flows inside the terminal andof passengers accessing and egressing the airport have beenintegrated to provide a holistic view of the passengerjourney from door-to-gate and vice versa.This paper describes IMHOTEP’s application at two casestudy airports, Palma de Mallorca (PMI) and London City(LCY), at Proof of Concept (PoC-level) assessing impactand service improvements for passengers, airport operatorsand other key stakeholders.For the first time onemeasurable process is created to open up opportunities forbetter communication across all associated stakeholders.Ultimately the successful implementation will lead to areduction of the carbon footprint of the passenger journeyby better use of existing facilities and surface transportservices, and the delay or omission of additional airportfacility capacities.
DOCUMENT
Despite increasing efforts regarding knowledge valorisation, a significant gap between knowledge development and policy practice remains. Urban Intelligence bridges this gap by bringing cutting edge knowledge to the table, developing new policy concepts and by promoting smart data use.The professorship of Urban Intelligence takes a multimodal and integrated approach by connecting knowledge of transport engineering, urban planning and urban design. Research output encompasses data-driven projects, such as ‘Multimodal Brabant’ and ‘Measurement Weeks Breda‘, which translate big data into knowledge for policy development.Furthermore, data analysis tool and data dashboards for cycling, such as ‘CyclePRINT’ have been developed. To enhance the integration of built environment and transportation, we developed the Bicycle-Oriented Development (BOD) concept. This is currently being integrated into an overarching development philosophy, ‘Multimodal Urban Development’, which integrates the optimisation of multimodal networks, location choices for new urban developments and the provision of shared mobility via mobility hubs.