Students and lecturers share educational experiences, each in their role: Students as part of their learning context and lecturers as part of their work environment. But how much of their experiences are similar? A questionnaire was developed to provide insight into the experiences of research integration of undergraduate students (N = 2336) and lecturers (N = 379). For measurements, the Research Attitudes in Vocational Education Questionnaire (RAVE-Q), and Experience in Research Integration scale were applied to the student survey design. For lecturers, all items of the student surveys were rephrased into items related to lecturers’ perceptions of their students’ attitudes and experiences. The findings show that students and lecturers share perceptions about the role of research in their related vocational field and about research integration. However, important cognitive and affective differences were found between students and lecturers regarding research practice. Implications for further research and educational design will be discussed.
The support for connections between research and education is widespread. This connection yields the promise of educating students for the knowledge society. With the curriculum as the most important carrier of planned higher education, the lack of systematic insight in how research can be integrated into the curriculum is an important omission. This systematic review considers how empirical studies provide input for the integration of research in the higher education curriculum. Moreover, it provides a structured insight into the current body of knowledge on research in the curriculum. Based on a first set of 5815 journal articles, 121 articles were selected for further analysis. The model of Curriculum Aspects by Van den Akker (2003) was used to categorise the articles, which shows a body of knowledge on research in the curriculum with the largest focus on learning aims and learning activities. Furthermore, this review shows how few studies consider the effects of curriculum design on student learning, which calls for more empirical studies to benefit student learning.
MULTIFILE
Whilst until the late 1980s most migration issues developed in a parallel manner but with national specifics, important differences showed up during the 1990s and at the beginning of this decade. Since the middle of the 1990s, there has been an obvious change in policy towards migrants and foreigners in the Netherlands, and those changes have been more or less “exported” to our neighbouring countries and even to the level of the EU. Integration into society with the maintenance of the immigrant’s own culture has been replaced by integration into the Dutch society after passing an integration examination. The focus of this article is to investigate those changes and to compare the implementation of those policies in the Netherlands/Limburg and Germany/NRW, where the official understanding of not being an immigration country was dominant until the end of the 1990s, and where integration has only recently become an important political issue. Both countries are now facing similar challenges for better integration into the society, especially into the educational system. Firstly, the autors describe migration definitions, types, the numbers of migrants and the backgrounds of migrant policies in Germany and the Netherlands up until the middle of the 1990s. Secondly they discuss the integration policies thereafter: the pathway to a new policy and the Action Plan Integration in Germany, and the central ideas of the Civic Integration of Newcomers Act (WIN) in the Netherlands. Integration policy in the Netherlands is highly centralised with little differentiation on the local governmental level when compared to South Limburg. Thirdly, the autors investigate the cross-border cooperation between professional organisations and educational institutions in the Euregio Meuse-Rhine, and the involvement of social work institutions and social workers in their process of integration into the local society and the exchange of each others’ experiences (the ECSW and RECES projects).
In dit project zal een online onderwijsmodule worden ontworpen. In deze module zal een deel van de output van het project Bouwen met Levende Natuur worden verwerkt tot onderwijs. Het maken van online course materiaal binnen de HZ onderwijsonwikkeling, waar zowel echte casuistiek uit de de beroepspraktijk, als gebruik van ICT mogelijkheden centraal staan. Door de modulaire opbouw zal het mogelijk zijn onderdelen in verschillende courses te verwerken. De docent kan dan de module naar eigen wens, en onafhankelijk van de beschikbaarheid van interne of externe gastdocenten, inzetten voor ‘blended learning’. De benadering binnen de learning unit(s) volgt het constructivisme, activiteiten die te maken hebben met kennisoverdracht, zullen derhalve worden afgewisseld met verwerkingsopdrachten. De volledige onderwijsmodule richt zich vooral op onderwijs op het gebied van Coastal Engineering van de opleiding Civiele Techniek (CT), in eerste instantie van de Delta Academy; CT studenten blijken behoefte te hebben aan een uitleg van ecologische principes vanuit vanuit een meer technisch perspectief. De learning units/onderwijsmodule is uiteraard ook beschikbaar voor andere hbo opleidingen. Het geselecteerde gedeelte, de eerste learning unit, zal ook bruikbaar zijn voor de course Integrated Coastal Zone Management (ICZM), waarin oa het concept Building with Nature wordt uitgelegd. In de huidige vorm wordt dit onderdeel op de klassieke manier gebracht, in de vorm van een hoorcollege. De ontwikkeling van online materiaal maakt de afwisseling met het verwerken van de aangebrachte kennis eenvoudiger; de structuur daarvoor wordt in de online versie al aangebracht. Deze learning unit brengt niet alleen wat aanvullende benaderingen vanuit technisch perspectief, maar is ook een aanpassing, die het geheel hestructureert volgens het constructivisme. De course ICZM is een keuze-course, bedoeld voor Aquatische Ecotechnologie (AET), Delta Management (DM) en CT studenten; waar CT studenten meer behoefte hebben aan een technisch perspectief, heeft deze course ook te maken met DM studenten, die juist wat meer kennis zouden moeten maken met meer technische benaderingen.
To reach the European Green Deal by 2050, the target for the road transport sector is set at 30% less CO2 emissions by 2030. Given the fact that heavy-duty commercial vehicles throughout Europe are driven nowadays almost exclusively on fossil fuels it is obvious that transition towards reduced emission targets needs to happen seamlessly by hybridization of the existing fleet, with a continuously increasing share of Zero Emission vehicle units. At present, trailing units such as semitrailers do not possess any form of powertrain, being a missed opportunity. By introduction of electrically driven axles into these units the fuel consumption as well as amount of emissions may be reduced substantially while part of the propulsion forces is being supplied on emission-free basis. Furthermore, the electrification of trailing units enables partial recuperation of kinetic energy while braking. Nevertheless, a number of challenges still exist preventing swift integration of these vehicles to daily operation. One of the dominating ones is the intelligent control of the e-axle so it delivers right amount of propulsion/braking power at the right time without receiving detailed information from the towing vehicle (such as e.g. driver control, engine speed, engine torque, or brake pressure, …etc.). This is required mainly to ensure interoperability of e-Trailers in the fleets, which is a must in the logistics nowadays. Therefore the main mission of CHANGE is to generate a chain of knowledge in developing and implementing data driven AI-based applications enabling SMEs of the Dutch trailer industry to contribute to seamless energetic transition towards zero emission road freight transport. In specific, CHANGE will employ e-Trailers (trailers with electrically driven axle(s) enabling energy recuperation) connected to conventional hauling units as well as trailers for high volume and extreme payload as focal platforms (demonstrators) for deployment of these applications.
Within the food industry there is a need to be able to rapidly react to changing regulatory requirements and consumer preferences by adjusting recipes, processes, and products. A good knowledge of the properties of food ingredients is crucial in this process. Currently this knowledge is available in scattered heterogeneous resources such as scientific peer-reviewed articles, databases, recipes, food blogs as well as in the experience of food-experts. This prevents, in practice, the efficient integration and use of this knowledge, leading to inefficiency and missed opportunities. In this project we will build a structured database of properties of food ingredients, focusing in particular on the taste and texture properties. By large-scale collection and text mining on a large number of textual resources, a comprehensive data set on ingredient properties will be created, along with knowledge on the relationships between these ingredients. This database will then be used for to find new potential applications for healthy and taste enhancing ingredient combinations by network-based discovery methods and artificial intelligence algorithms will be used. A concrete focus will be on application questions formulated by the industrial partners. The resulting hypothesis will be validated in a real life setting at the premises of the industrial partners. The deliverables of this project will be: - A reusable open-access ingredient database that is accessible via a user-friendly web portal - A set of state-of-the-art mining algorithms that can address a wide variety of industry driven use cases - Novel product formulations that can be further developed for the consumer and business2business market