Inaugural address of Frederike Praasterink, Professor Future Food Systems 22 February 2018. Three important principles contribute to the transformation of food systems: - Redesign food systems from ‘less bad’ to ‘net positive’ - Reconnect consumers, producers, youth - Revalue food through true cost accounting and new business models
MULTIFILE
Until recently, we separated farmers and urban communities. Each had their own ministries, policy plans, cultures, knowledge and education institutes and even political parties. Now we accept that this division is gone in the Netherlands. Rural areas ceased to exist, and urbanity was found everywhere. Former rural areas were transformed into green spaces inside metropolitan areas. Farmers and peaceful villages woke up and saw themselves surrounded by cities. Even more: city dwellers became their neighbours. The time has come that we look upon farming and urbanised areas as an integrated system.
MULTIFILE
Smallholders are a substantial part of the oil palm sector and thus key to achieve more sustainable production. However, so far their yields remain below potential. The Roundtable on Sustainable Oil Palm (RSPO) aims to include smallholders in sustainability certification to strengthen rural livelihoods and reduce negative environmental impacts. This study aims to determine if and how certified smallholders perform differently from their non-certified counterparts in terms of management practices and yields, and to what extend this is related to RSPO certification.
MULTIFILE
Aiming for a more sustainable future, biobased materials with improved performance are required. For biobased vinyl polymers, enhancing performance can be achieved by nanostructuring the material, i.e. through the use of well-defined (multi-)block, gradient, graft, comb, etc., copolymer made by controlled radical polymerization (CRP). Dispoltec has developed a new generation of alkoxyamines, which suppress termination and display enhanced end group stability compared to state-of-art CRP. Hence, these alkoxyamines are particularly suited to provide access to such biobased nanostructured materials. In order to produce alkoxyamines in a more environmentally benign and efficient manner, a photo-chemical step is beneficial for the final stage in their synthesis. Photo-flow chemistry as a process intensification technology is proposed, as flow chemistry inherently leads to more efficient reactions. In particular, photo-flow offers the benefit of significantly enhancing reactant concentrations and reducing batch times due to highly improved illumination. The aim of this project is to demonstrate at lab scale the feasibility of producing the new generation of alkoxy-amines via a photo-flow process under industrially relevant conditions regarding concentration, duration and efficiency. To this end, Zuyd University of Applied Sciences (Zuyd), CHemelot Innovation and Learning Labs (CHILL) and Dispoltec BV want to enter into a collaboration by combining the expertise of Dispoltec on alkoxyamines for CRP with those of Zuyd and CHILL on microreactor technology and flow chemistry. Improved access to these alkoxyamines is industrially relevant for initiator manufacturers, as well as producers of biobased vinyl polymers and end-users aiming to enhance performance through nanostructuring biobased materials. In addition, access in this manner is a clear demonstration for the high industrial potential of photo-flow chemistry as sustainable manufacturing tool. Further to that, students and professionals working together at CHILL will be trained in this emerging, industrially relevant and sustainable processing tool.