Our study introduces an open general-purpose platform for the embodiment of conversational AI systems. Conversational User-interface Based Embodiment (CUBE) is designed to streamline the integration of embodied solutions into text-based dialog managers, providing flexibility for customization depending on the specific use case and application. CUBE is responsible for naturally interacting with users by listening, observing, and responding to them. A detailed account of the design and implementation of the solution is provided, as well as a thorough examination of how it can be integrated by developers and AI dialogue manager integrators. Through interviews with developers, insight was gained into the advantages of such systems. Additionally, key areas that require further research were identified in the current challenges in achieving natural interaction between the user and the embodiments. CUBE bridges some of the gaps by providing controls to further develop natural non-verbal communication.
LINK
Deze handreiking is ontwikkeld voor designers en ontwikkelaars van AI-systemen, met als doel om te zorgen dat deze systemen voldoende uitlegbaar zijn. Voldoende betekent hier dat het voldoet aan de wettelijke eisen vanuit AI Act en AVG en dat gebruikers het systeem goed kunnen gebruiken. In deze handreiking leggen we ten eerste uit wat de eisen zijn die er wettelijk gelden voor uitlegbaarheid van AI-systemen. Deze zijn afkomstig uit de AVG en de AI-Act. Vervolgens leggen we uit hoe AI gebruikt wordt in de financiële sector en werken één probleem in detail uit. Voor dit probleem laten we vervolgens zien hoe de user interface aangepast kan worden om de AI uitlegbaar te maken. Deze ontwerpen dienen als prototypische voorbeelden die aangepast kunnen worden op nieuwe problemen. Deze handreiking is gebaseerd op uitlegbaarheid van AI-systemen voor de financiële sector. De adviezen kunnen echter ook gebruikt worden in andere sectoren.
MULTIFILE
Introduction: Sensor-feedback systems can be used to support people after stroke during independent practice of gait. The main aim of the study was to describe the user-centred approach to (re)design the user interface of the sensor feedback system “Stappy” for people after stroke, and share the deliverables and key observations from this process. Methods: The user-centred approach was structured around four phases (the discovery, definition, development and delivery phase) which were fundamental to the design process. Fifteen participants with cognitive and/or physical limitations participated (10 women, 2/3 older than 65). Prototypes were evaluated in multiple test rounds, consisting of 2–7 individual test sessions. Results: Seven deliverables were created: a list of design requirements, a personae, a user flow, a low-, medium- and high-fidelity prototype and the character “Stappy”. The first six deliverables were necessary tools to design the user interface, whereas the character was a solution resulting from this design process. Key observations related to “readability and contrast of visual information”, “understanding and remembering information”, “physical limitations” were confirmed by and “empathy” was additionally derived from the design process. Conclusions: The study offers a structured methodology resulting in deliverables and key observations, which can be used to (re)design meaningful user interfaces for people after stroke. Additionally, the study provides a technique that may promote “empathy” through the creation of the character Stappy. The description may provide guidance for health care professionals, researchers or designers in future user interface design projects in which existing products are redesigned for people after stroke.
DOCUMENT
This guide was developed for designers and developers of AI systems, with the goal of ensuring that these systems are sufficiently explainable. Sufficient here means that it meets the legal requirements from AI Act and GDPR and that users can use the system properly. Explainability of decisions is an important requirement in many systems and even an important principle for AI systems [HLEG19]. In many AI systems, explainability is not self-evident. AI researchers expect that the challenge of making AI explainable will only increase. For one thing, this comes from the applications: AI will be used more and more often, for larger and more sensitive decisions. On the other hand, organizations are making better and better models, for example, by using more different inputs. With more complex AI models, it is often less clear how a decision was made. Organizations that will deploy AI must take into account users' need for explanations. Systems that use AI should be designed to provide the user with appropriate explanations. In this guide, we first explain the legal requirements for explainability of AI systems. These come from the GDPR and the AI Act. Next, we explain how AI is used in the financial sector and elaborate on one problem in detail. For this problem, we then show how the user interface can be modified to make the AI explainable. These designs serve as prototypical examples that can be adapted to new problems. This guidance is based on explainability of AI systems for the financial sector. However, the advice can also be used in other sectors.
DOCUMENT
Purpose: The aims of this study were to investigate how a variety of research methods is commonly employed to study technology and practitioner cognition. User-interface issues with infusion pumps were selected as a case because of its relevance to patient safety. Methods: Starting from a Cognitive Systems Engineering perspective, we developed an Impact Flow Diagram showing the relationship of computer technology, cognition, practitioner behavior, and system failure in the area of medical infusion devices. We subsequently conducted a systematic literature review on user-interface issues with infusion pumps, categorized the studies in terms of methods employed, and noted the usability problems found with particular methods. Next, we assigned usability problems and related methods to the levels in the Impact Flow Diagram. Results: Most study methods used to find user interface issues with infusion pumps focused on observable behavior rather than on how artifacts shape cognition and collaboration. A concerted and theorydriven application of these methods when testing infusion pumps is lacking in the literature. Detailed analysis of one case study provided an illustration of how to apply the Impact Flow Diagram, as well as how the scope of analysis may be broadened to include organizational and regulatory factors. Conclusion: Research methods to uncover use problems with technology may be used in many ways, with many different foci. We advocate the adoption of an Impact Flow Diagram perspective rather than merely focusing on usability issues in isolation. Truly advancing patient safety requires the systematic adoption of a systems perspective viewing people and technology as an ensemble, also in the design of medical device technology.
DOCUMENT
Purpose: The purposes of this study were, first, to (re)design the user-interface of the activity tracker known as the MOX with the help of input from elderly individuals living independently and, second, to assess the use of and experiences with the adapted Measure It Super Simple (MISS) activity tracker in daily life. Methods: The double diamond method, which was used to (re)design the user-interface, consists of four phases: discover, define, develop, and deliver. As a departure point, this study used a list of general design requirements that facilitate the development of technology for the elderly. Usage and experiences were assessed through interviews after elderly individuals had used the activity tracker for 2 weeks. Results: In co-creation with thirty-five elderly individuals (65 to 89-years-old) the design, feedback system, and application were further developed into a user-friendly interface: the Measure It Super Simple (MISS) activity. Twenty-eight elderly individuals (65 to 78-years-old) reported that they found the MISS activity easy to use, needed limited help when setting the tracker up, and required limited assistance when using it during their daily lives. Conclusions: This study offers a generic structured methodology and a list of design requirements to adapt the interface of an existing activity tracker consistent with the skills and needs of the elderly. The MISS activity seemed to be successfully (re)designed, like the elderly who participated in this pilot study reported that anyone should be able to use it.
DOCUMENT
The paper investigates how an audience can be challenged to 'perform as interface' pointing towards the activation of a certain attitude; an active mind-set which constantly leads the attention back to the experience of our body; to perceive, critically read and make sense of this experience in relation to the interaction with(in) the technologically mediated world [16]. As a case, the paper focuses on the interactive installation "CHAIR-JUMP-CHUTE" and on the various ways the audience was induced to interact with it. The paper identifies triggers stimulating the participant to become fully - as in physically and mentally - engaged in the interaction with a technological installation in the semi-public setting of a cultural institute. Furthermore, it explores how the perceived thresholds (like other people watching, physical challenges or "apparative resistance" [9], become more than 'elements to overcome' as they can also be seen as giving meaning and depth to the interactive experience. The paper sums up what factors trigger this challenging and at the same time demanding (embodied) interaction, in order for this interaction to become an important actual / critical part of the aesthetic experience of interactive art, as it challenges the participant to perform as interface.
DOCUMENT
The paper investigates how an audience can be challenged to 'perform as interface' pointing towards the activation of a certain attitude; an active mind-set which constantly leads the attention back to the experience of our body; to perceive, critically read and make sense of this experience in relation to the interaction with(in) the technologically mediated world [16]. As a case, the paper focuses on the interactive installation "CHAIR-JUMP-CHUTE" and on the various ways the audience was induced to interact with it. The paper identifies triggers stimulating the participant to become fully - as in physically and mentally - engaged in the interaction with a technological installation in the semi-public setting of a cultural institute. Furthermore, it explores how the perceived thresholds (like other people watching, physical challenges or "apparative resistance" [9], become more than 'elements to overcome' as they can also be seen as giving meaning and depth to the interactive experience. The paper sums up what factors trigger this challenging and at the same time demanding (embodied) interaction, in order for this interaction to become an important actual / critical part of the aesthetic experience of interactive art, as it challenges the participant to perform as interface.
DOCUMENT
This paper explores the delicate interface between management accounting and marketing management. Based on the scope of their mutual relationship, a distinction is made between two types of interfaces: informing and integrating. Whereas the traditional management accounting domains, such as budgetary control, are characterized by an informing interface, some recently developed management accounting techniques, such as the Balanced Scorecard, target costing and customer profitability analysis, require an integrating interface. Therefore, although during the last three decades clear progress has been made in strengthening the interface between management accounting and marketing management, there is still much room for further improvement. By its inclusion nowadays of marketing and operational management issues, management accounting has broadened its focus beyond the traditional financial domain. However, the adoption of ideas and concepts from other disciplines may not be enough to internalize a truly multi-disciplinary approach to business problems. A challenging interface between management accounting and marketing management is, for example, measuring the value of brands in monetary terms.
DOCUMENT
We outline the architecture of a CBIR-interface that allows the user to interactively classify images by dragging and dropping them into different piles and instructing the interface to come up with features that can mimic this classffication. Logistic regression and Sammon projection are used to support this search mode.
DOCUMENT