IntroductionThe driving pressure (ΔP) has an independent association with outcome in patients with acute respiratory distress syndrome (ARDS). INTELLiVENT-Adaptive Support Ventilation (ASV) is a closed-loop mode of ventilation that targets the lowest work and force of breathing.AimTo compare transpulmonary and respiratory system ΔP between closed-loop ventilation and conventional pressure controlled ventilation in patients with moderate-to-severe ARDS.MethodsSingle-center randomized cross-over clinical trial in patients in the early phase of ARDS. Patients were randomly assigned to start with a 4-h period of closed-loop ventilation or conventional ventilation, after which the alternate ventilation mode was selected. The primary outcome was the transpulmonary ΔP; secondary outcomes included respiratory system ΔP, and other key parameters of ventilation.ResultsThirteen patients were included, and all had fully analyzable data sets. Compared to conventional ventilation, with closed-loop ventilation the median transpulmonary ΔP with was lower (7.0 [5.0–10.0] vs. 10.0 [8.0–11.0] cmH2O, mean difference − 2.5 [95% CI − 2.6 to − 2.1] cmH2O; P = 0.0001). Inspiratory transpulmonary pressure and the respiratory rate were also lower. Tidal volume, however, was higher with closed-loop ventilation, but stayed below generally accepted safety cutoffs in the majority of patients.ConclusionsIn this small physiological study, when compared to conventional pressure controlled ventilation INTELLiVENT-ASV reduced the transpulmonary ΔP in patients in the early phase of moderate-to-severe ARDS. This closed-loop ventilation mode also led to a lower inspiratory transpulmonary pressure and a lower respiratory rate, thereby reducing the intensity of ventilation.Trial registration Clinicaltrials.gov, NCT03211494, July 7, 2017. https://clinicaltrials.gov/ct2/show/NCT03211494?term=airdrop&draw=2&rank=1.
MULTIFILE
We describe the practice of ventilation and mortality rates in invasively ventilated normal-weight (18.5 ≤ BMI ≤ 24.9 kg/m2), overweight (25.0 ≤ BMI ≤ 29.9 kg/m2), and obese (BMI > 30 kg/m2) COVID-19 ARDS patients in a national, multicenter observational study, performed at 22 intensive care units in the Netherlands. The primary outcome was a combination of ventilation variables and parameters over the first four calendar days of ventilation, including tidal volume, positive end–expiratory pressure (PEEP), respiratory system compliance, and driving pressure in normal–weight, overweight, and obese patients. Secondary outcomes included the use of adjunctive treatments for refractory hypoxaemia and mortality rates. Between 1 March 2020 and 1 June 2020, 1122 patients were included in the study: 244 (21.3%) normal-weight patients, 531 (47.3%) overweight patients, and 324 (28.8%) obese patients. Most patients received a tidal volume < 8 mL/kg PBW; only on the first day was the tidal volume higher in obese patients. PEEP and driving pressure were higher, and compliance of the respiratory system was lower in obese patients on all four days. Adjunctive therapies for refractory hypoxemia were used equally in the three BMI groups. Adjusted mortality rates were not different between BMI categories. The findings of this study suggest that lung-protective ventilation with a lower tidal volume and prone positioning is similarly feasible in normal-weight, overweight, and obese patients with ARDS related to COVID-19. A patient’s BMI should not be used in decisions to forgo or proceed with invasive ventilation.
Background: Ventilation management may differ between COVID–19 ARDS (COVID–ARDS) patients and patients with pre–COVID ARDS (CLASSIC–ARDS); it is uncertain whether associations of ventilation management with outcomes for CLASSIC–ARDS also exist in COVID–ARDS. Methods: Individual patient data analysis of COVID–ARDS and CLASSIC–ARDS patients in six observational studies of ventilation, four in the COVID–19 pandemic and two pre–pandemic. Descriptive statistics were used to compare epidemiology and ventilation characteristics. The primary endpoint were key ventilation parameters; other outcomes included mortality and ventilator–free days and alive (VFD–60) at day 60. Results: This analysis included 6702 COVID–ARDS patients and 1415 CLASSIC–ARDS patients. COVID–ARDS patients received lower median VT (6.6 [6.0 to 7.4] vs 7.3 [6.4 to 8.5] ml/kg PBW; p < 0.001) and higher median PEEP (12.0 [10.0 to 14.0] vs 8.0 [6.0 to 10.0] cm H2O; p < 0.001), at lower median ΔP (13.0 [10.0 to 15.0] vs 16.0 [IQR 12.0 to 20.0] cm H2O; p < 0.001) and higher median Crs (33.5 [26.6 to 42.1] vs 28.1 [21.6 to 38.4] mL/cm H2O; p < 0.001). Following multivariable adjustment, higher ΔP had an independent association with higher 60–day mortality and less VFD–60 in both groups. Higher PEEP had an association with less VFD–60, but only in COVID–ARDS patients. Conclusions: Our findings show important differences in key ventilation parameters and associations thereof with outcomes between COVID–ARDS and CLASSIC–ARDS. Trial registration: Clinicaltrials.gov (identifier NCT05650957), December 14, 2022.