PURPOSE: It has been reported that there is no correlation between anterior tibia translation (ATT) in passive and dynamic situations. Passive ATT (ATTp) may be different to dynamic ATT (ATTd) due to muscle activation patterns. This study aimed to investigate whether muscle activation during jumping can control ATT in healthy participants.METHODS: ATTp of twenty-one healthy participants was measured using a KT-1000 arthrometer. All participants performed single leg hops for distance during which ATTd, knee flexion angles and knee flexion moments were measured using a 3D motion capture system. During both tests, sEMG signals were recorded.RESULTS: A negative correlation was found between ATTp and the maximal ATTd (r = - 0.47, p = 0.028). An N-Way ANOVA showed that larger semitendinosus activity was seen when ATTd was larger, while less biceps femoris activity and rectus femoris activity were seen. Moreover, larger knee extension moment, knee flexion angle and ground reaction force in the anterior-posterior direction were seen when ATTd was larger.CONCLUSION: Participants with more ATTp showed smaller ATTd during jump landing. Muscle activation did not contribute to reduce ATTd during impact of a jump-landing at the observed knee angles. However, subjects with large ATTp landed with less knee flexion and consequently showed less ATTd. The results of this study give information on how healthy people control knee laxity during jump-landing.LEVEL OF EVIDENCE: III.
It is unknown how movement patterns that are learned carry over to the field. The objective was to deter- mine whether training during a jump-landing task would transfer to lower extremity kinematics and kinetics during sidestep cutting.Methods Forty healthy athletes were assigned to the ver- bal internal focus (IF, n = 10), verbal external focus (EF, n = 10), video (VI, n = 10) or control (CTRL, n = 10) group. A jump-landing task was performed as baseline followed by training blocks (TR1 and TR2) and a post-test. Group-spe- cific instructions were given in TR1 and TR2. In addition, participants in the IF, EF and VI groups were free to ask for feedback after every jump during TR1 and TR2. Retention was tested after 1 week. Transfer of learned skill was deter- mined by having participants perform a 45° unanticipated sidestep cutting task. 3D hip, knee and ankle kinematics and kinetics were the main outcome measures.Results During sidestep cutting, the VI group showed greater hip flexion ROM compared to the EF and IF groups (p < 0.001). The EF (p < 0.036) and VI (p < 0.004) groups had greater knee flexion ROM compared to the IF group. Conclusions Improved jump-landing technique car- ried over to sidestep cutting when stimulating an external attentional focus combined with self-controlled feedback. Transfer to more sport-specific skills may demonstrate potential to reduce injuries on the field. Clinicians and practitioners are encouraged to apply instructions that stimulate an external focus of attention, of which visual instructions seem to be very powerful.
Background: In team handball an anterior cruciate ligament (ACL) injury often occurs during landing after a jump shot. Many intervention programs try to reduce the injury rate by instructing the athletes to land safer. Video feedback is an effective way to provide feedback although little is known about its influence on landing technique in sport-specific situations. Objective: To test the effectiveness of a video overlay feedback method on landing technique in elite handball players. Method: Sixteen elite female handball players were assigned to a Control or Video Group. Both groups performed jump shots in a pre-test, two training sessions (TR1 & TR2) and a post-test. The Video Group received video feedback of an expert model with an overlay of their own jump shots in TR1 and TR2 whilst the Control Group did not. Main outcome measures were sagittal ankle, knee and hip angles during initial contact (IC), maximum (MAX) and range of motion (ROM), in addition to the Landing Error Scoring System (LESS) score. One 2x4 repeated measures ANOVA was conducted to analyze group, time and interaction effects of all kinematic outcome measures and the LESS score. Results: The Video Group displayed significant improvement in knee and hip flexion at IC, MAX and ROM. In addition, MAX ankle flexion and their LESS score improved an average of 8.1 in the pre-test to 4.0 in the post-test. When considering performance variables, no differences between Control Group and Video Group were found in shot accuracy or vertical jump height, whilst horizontal jump distance in the Video Group became greater over time. Conclusion: Overlay visual feedback is an effective method to improve landing kinematics during a sport-specific jump shot. Further research is now warranted to determine the long-term effects and transfer to training and game situations.