Although urban agriculture as a way to come to sustainable urban food systems can be questioned and we have to be aware not falling into a ‘local trap’ regarding its benefits (Born & Purcell, 2006), initiatives for urban agriculture emerge all over the world. Some of these primarily focus on achieving social and educational goals while others try to become an (high tech) alternative to existing food supply chains. Whichever the goals of urban agriculture, in practice many of these initiatives have difficulties in their (logistics) operations. Research on urban agriculture and local‐for‐local food supply chains mainly focuses on environmental and economic benefits, alternative production techniques, short food supply chains (logistics infrastructure) or socio‐economic benefits of urban agriculture. So far, the alignment of urban agriculture goals with the chosen logistics concept – which includes more aspects than only infrastructure – has not gained much attention. This paper tries to fill this gap through an exploration of urban agriculture projects – both low and high tech – from around the world by using the integrated logistics concept (Van Goor et al., 2003). The main question to be answered in this paper is: to what extend can the integrated logistics concept contribute to understanding logistics drivers and barriers of urban agriculture projects? To answer this question, different urban agriculture projects were studied through information on their websites and an internet based questionnaire with key players in these projects. Our exploration shows that the ILC is a useful tool for determining logistics drivers and barriers and that there is much potential in using this concept when planning for successful urban agriculture projects.
MULTIFILE
This paper presents the results of a survey which aimed at exploring the perceptions of the employees of a large aviation organization regarding the punitive or preventive character of possible measures that management could take in cases of errors and violations. The analysis of the quantitative and qualitative data collected showed that the viewpoints of the staff were sufficiently aligned only for half of the measures and that all measures inflicting a short- or long-term dissociation of the end-users from their current working place and function were highly unfavourable and linked to castigation. Also, statistically significant differences were observed across groups of specialties and years of service regarding the appropriateness of specific measures especially in the case of errors. The findings of this study in combination with literature references, suggest that the establishment of a just culture structure with agreed lines between the punitive and preventive character of measures and its endorsement by the employees is achievable, but it requires a bottom-up approach and periodical revision. Similar exploratory research, complemented possibly by explanatory studies, is recommended to be carried out by organizations prior or during the development of their just culture policy andrelated measures.
The demand for the transport of goods within the city is rising and with that the number of vans driving around. This has adverse effects on air quality, noise, safety and liveability in the city. LEFVs (Light Electric Freight Vehicles) offer a potential solution for this. There is already a lot of enthusiasm for the LEFVs and several companies have started offering the vehicles. Still many companies are hesitating to start and experience. New knowledge is needed of logistics concepts for the application of LEFVs. This paper shows the outcomes of eight case studies about what is needed to successfully deploy LEFVs for city logistics.
The growing demand for both retrofitting and refitting, driven by an aging global fleet and decarbonization efforts, including the need to accommodate alternative fuels such as LNG, methanol, and ammonia, offers opportunities for sustainability. However, they also pose challenges, such as emissions generated during these processes and the environmental impacts associated with the disposal of old components. The region Rotterdam and Drechtsteden form a unique Dutch maritime ecosystem of port logistics, shipbuilding, offshore operations, and innovation facilities, supported by Europe’s largest port and world-class infrastructure connecting global trade routes. The Netherlands’ maritime sector, including the sector concentrated in Zuid-Holland, is facing competition from subsidized Asian companies, leading to a steep decline in Europe’s shipbuilding market share from 45% in the 1980s to just 4% in 2023. Nonetheless, the shift toward climate-neutral ships presents economic opportunities for Dutch maritime companies. Thus, developing CE approaches to refitting is essential for promoting sustainability and addressing the pressing environmental and competitive challenges facing the sector and has led companies in the sector to establish the Open Joint Industry Project (OJIP) called Circolab of which this PD forms the core.