Paper presented online at the International Sustainability Transitions conference 2020, Wien, Austria
MULTIFILE
This article analyses four of the most prominent city discourses and introduces the lens of urban vitalism as an overarching interdisciplinary concept of cities as places of transformation and change. We demonstrate the value of using urban vitalism as a lens to conceptualize and critically discuss different notions on smart, inclusive, resilient and sustainable just cities. Urban vitalism offers a process-based lens which enables us to understand cities as places of transformation and change, with people and other living beings at its core. The aim of the article is to explore how the lens of vitalism can help us understand and connect ongoing interdisciplinary academic debates about urban development and vice versa, and how these ongoing debates inform our understanding of urban vitalism.
DOCUMENT
Due to their diverse funding sources, theatres are under increasing pressure to demonstrate impact on society. The Raad voor Cultuur (2023) for example advised the secretary of state to include societal impact as an additional evaluation measure next to artistic value. Many theaters, such as the Chassé Theater and Parkstad Limburg Theaters, have reformulated their missions to focus on impact of performances on visitors. This is a profound transformation from merely selling tickets and filling seats, and requires new measurement instruments to monitor, manage, and improve impact. Currently available instruments are insufficient, and effective monitoring is crucial to larger future projects that theaters are currently planning to systematically broaden impacts of performances on their communities. The specific goal of this project is to empower theaters to monitor and improve impact by developing a brief experience impact questionnaire, taking existing data from student projects conducted at the Chassé Theater about performing arts experiences on one hand, and experience impact theory innovations on the other, as starting points. We will develop potential items to measure and benchmark against established measures of valued societal outcomes, such as subjective well-being and quality of life. These will be measured in questionnaires developed with project partners Chassé Theater and Parkstad Limburg Theaters and administered before and after performances across a wide range of genres. The resulting data will enable comparison of new questionnaire items with benchmarked measures of valued societal outcomes. The final product of the project will be a brief impact questionnaire, which within several brief self-report instruments and just a few minutes can effectively be used to quantify the impact of a performing arts experience. A workshop and practice-oriented article will make this questionnaire implementable, thereby mobilizing the key enabling methodology of monitoring and impact measurement in the performing arts sector.
Fungal colorants offer a sustainable alternative to synthetic colors, which are derived from fossil fuels and contribute to environmental pollution. While fungal colorants could be effectively produced through precision fermentation by microorganisms, their adoption in industry remains limited due to challenges in processing, formulation, and application. ColorFun aims to bridge the gap between laboratory research, artisanal practices, and industrial needs by developing a scalable and adaptable colorant processing system. Building on the TUFUCOL project, which focused on optimizing fungal fermentation, ColorFun consortium gears the focus to downstream processing and industrial applications by using green chemistry. Many SMEs have explored fungal colorants using traditional methods, but due to lack of consistency and reproducibility, they are unsuitable for large-scale production. Meanwhile, lab research usually does not translate directly to industrial applications. Researchers can fine-tune processes under controlled conditions while large-scale production requires consistent formulations that work across different material substrates and processing environments. Without bridging these gaps, fungal colorants remain confined to research and small-scale applications rather than becoming viable industrial alternatives. Instead of developing separate solutions for each sector, ColorFun is working towards a set of standardized extraction and stabilization methods for a stable base colorant product. This pre-processed colorant can then be adjusted by different industries to meet their specific needs. This approach ensures both efficiency in production and flexibility in application. Professionals will collaborate in a test-improve-test circle, ColorFun will refine these formulations to ensure they work in real-world conditions. Students will be involved in the project, contributing to curriculum developments in biotechnology, chemistry, and materials science. Combining efforts, ColorFun lowers the barriers aiding fungal colorants to become a mainstream alternative to synthetic feedstocks. By making these colorants scientifically validated, industrially viable, and commercially adaptable, the project helps accelerate the transition to sustainable color solutions and circular economy.
Cities, the living place of 75% of European population, are crucial for sustainable transition in a just society. Therefore, the EU has launched a Mission for 100 Climate-Neutral Smart Cities (100CNSC). Construction is a key industry in making cities more sustainable. Currently, construction consumes 50% resources, uses 40% energy, and emits 36% greenhouse gasses. The sector is not cost-efficient, not human-friendly, and not healthy – it is negatively known for “3D: dirty, dangerous, demanding”. As such, the construction sector is not attractive for educated and skilled young professionals that are needed for the sustainable transition and for resolving the housing crisis. In contrast with the non-circular designs, materials and techniques that are still common in the construction industry, some other industries and fields have cultivated higher standards for sustainable products, especially in clean and efficient assembly and disassembly. Examples can be found in the maritime and off-shore industry, smart manufacturing, small electronics, and retail. The Hague University of Applied Sciences (THUAS) aims to become the leader of a strong European consortium for preliminary research to develop knowledge that is needed for the upcoming Horizon Europe proposal (within Cluster 4, Destination 1 - Re-manufacturing and De-manufacturing technologies) in relation with the EU Mission 100CNSC. The goals of this preliminary research are: (a) to articulate new concepts that will become an input for a new research proposal and (b) to organize a high-quality European consortium with high-quality partners for a lasting collaboration. This preliminary research project focuses on the question: How can the construction sector adopt and adapt the best practices in assembly and disassembly from other industries –including maritime, manufacturing and retails– in order to enhance circular urban construction and renovation with an active involvement of educated and skilled young professionals?
Lectoraat, onderdeel van NHL Stenden Hogeschool