© 2025 SURF
Voor de bescherming van de weidevogels worden beheermaatregelen in onder andere boerenland uitgevoerd. In dit korte webinar legt Astrid Manhoudt van Hogeschool Van Hall Larenstein uit welke maatregelen effectief zijn en met welke maatregelen een boer ook in het kader van natuurinclusieve landbouw aan de slag kan.
MULTIFILE
Presentatie op symposium Toekomst voor natuurinclusieve landbouw op 29 november 2024, RUG-Leeuwarden
MULTIFILE
De land- en tuinbouw staat onder druk. Enerzijds is er een steeds grotere vraag naar voedsel en anderzijds loopt de landbouw volop tegen ecologische en economische grenzen aan. Tegelijkertijd is de landbouw nog nooit zo vernieuwend geweest en op zo veel verschillende manieren. Boomteelt tegen klimaatverandering. Met aardwarmte gedroogde tomaten. Allerlei nieuwe, lokale producten en ketens. Met technologische duurzaamheidshoogstandjes, zoals veeteelt zonder antibiotica. Welke nieuwe businessmodellen geven de landbouw toekomst?
MULTIFILE
Uit de resultaten van een enquête die onder docenten van de groene mbo- en hbo-instellingen is gehouden blijkt dat de docenten graag met boeren, ondernemers en onderzoekers aan de slag willen met het thema natuurinclusieve landbouw in hun opleidingen.
MULTIFILE
Op basis van een literatuurstudie biedt dit rapport een overzicht van sleutelvariabelen voor de transitie naar Natuur-inclusieve Landbouw (NIL) vanuit een multi-level en multi-dimensionaal systeemperspectief. Het doel van de literatuurstudie is om te analyseren welke succes- en faalfactoren in de literatuur genoemd worden om de transitie naar een natuurinclusieve landbouw mogelijk te maken dan wel te versnellen. Deze studie geeft daarmee handen en voeten aan een handelingsperspectief voor NIL. Dit handelingsperspectief vergt maatwerk per gebied, en kan verschillen afhankelijk van het schaalniveau waarop geacteerd wordt, en is afhankelijk van de mate waarin sleutelfactoren en betrokken actoren elkaar versterken of beperken.
Kunstmest voor de velden en brandstof voor landbouwvoertuigen zijn belangrijke kostenposten voor de landbouw. Kunstmest en dieselbrandstof zijn energie-intensieve producten en daarmee ook een belangrijke bron van CO2 emissies vanuit de landbouw. Technologie voor hernieuwbare energie zoals zonne- en wind energie wordt steeds goedkoper waardoor het rendabeler wordt deze technologie ook te gebruiken. Terug leveren van geproduceerde hernieuwbare elektriciteit aan het elektriciteitsnet is echter niet altijd voordelig. De hernieuwbare energie moet hier concurreren met gesubsidieerde fossiele elektriciteit opgewekt met kolen, gas en kerncentrales. Kleinschalige decentrale productie op het boerenbedrijf van zowel kunstmest als transportbrandstof met behulp van hernieuwbare energie levert de boer en zijn omgeving direct voordeel op:Inkoopkosten voor deze producten worden lagerVermindert de CO2-emissie van de landbouw aanzienlijk, de carbo-footprint wordt verminderdRendement op hernieuwbare energie technologie wordt hogerAmmoniak (NH3) is zowel grondstof voor kunstmest als brandstof voor motoren. Ammoniak kan diesel voor meer dan 90% vervangen in bestaande dieselmotoren. Daarmee is ammoniak een uitstekende vervanger voor diesel in het landbouw en wegverkeer. Ammoniak is ook grondstof voor waterstof (H2) in waterstofmotoren. De technologie om ammoniak te maken is gebaseerd op het Haber-Bosch proces uit het begin van de vorige eeuw. Deze technologie vraagt veel energie voor het creëren van de hoge druk en de hoge temperaturen. Daarom is het voordelig het Haber-Bosch proces in grote installaties uit te voeren.Nieuwe brandstofcel-technologie maakt het mogelijk het Haber-Bosch proces (elektro-katalytisch) op kleine schaal uit te voeren. Het Kiemkracht concept Greenfertilizer onderzoekt de mogelijkheden van deze technologie voor ammoniak productie en benutting op het eigen boerenbedrijf.Het onderzoek is uitgevoerd door TU-Delft en Hanzehogeschool. Het doel was een opgeschaald ammonia elektrolyse synthese proces te ontwikkelen waar een eerste schaal-sprong gemaakt zou worden.Het elektrochemisch ammonia synthese proces is gebaseerd op zuurstofgeleidende elektroden, (proces figuur3. zie onder). Het voordeel van deze zuurstofgeleidende electroden boven proton geleidende electroden is dat er met omgevingslucht gewerkt kan worden in plaats van met stoom. Stoom maakt technologische ontwikkeling van het proces gecompliceerder. Experimenteel en theoretisch onderzoek van TU-Delft laat zien dat met deze elektroden ammonia te produceren is. TU-Delft heeft met zuurstof geleidende electroden ammonia productiesnelheden behaald van 1,84x 10-10 mol s-1 cm-2 bij 650oC. Deze snelheden zijn een factor 100-1000 hoger dan tot nu toe gerapporteerd in literatuur (Kyriakou et al 2017). Simulatie-studies van TU-Delft laten zien dat het ammonia synthese proces met een factor 100-1000 versneld kan worden door het proces onder druk te brengen bij een temperatuur van 400-500C. Op basis van deze simulaties is een ontwerp gemaakt en uitgevoerd voor een “hoge-druk electrolyse reactor”. Technische complicaties met deze hoge druk elektrolyse reactor maakte het onmogelijk betrouwbare resultaten te verkrijgen. Met name gas lekkages bij hoge temperaturen maakten het onmogelijk ammonia massabalansen op te stellen. Bovendien was ammonia productie niet aan te tonen. Hiermee zijn de simulatie voorspellingen niet bevestigd en blijft het onduidelijk of de onderliggende hypothesen correct zijn. De Hanzehogeschool heeft onderzoek uitgevoerd naar het concentreren van ammonia voor toepassing als vloeibare kunstmest. Uitgangspunt hierbij waren de ammonia productieniveau van de experimentele opzet en de voorspelde gesimuleerde opzet. Met de juiste technologie is het mogelijk de ammonia te concentreren voor verdere verwerking als kunstmest. Echter dit proces is economisch rendabel bij een ammonia concentratie in de uitstroom van de elektrolyse reactor die een factor 1000 hoger is dan tot nu toe is gemeten. Het feit dat de TU-Delft er niet in is geslaagd een kleine schaalsprong (factor 10) te maken met de drukreactor betekent dat commerciële toepassing van dit proces voorlopig nog niet aan de orde is. Achteraf gezien was het wellicht beter geweest de keuze te maken voor de proton geleidende electroden die bij lagere temperaturen werkzaam zijn, hier is een schaalsprong van een factor 100 ten opzichte van de recent gerapporteerde ammonia synthese snelheden. Een recente review door Kyriakou et al 2017 geeft als aanbeveling onderzoek te verrichten naar verbeterde elektrodematerialen en geleidende elektrolyten in de reactorcellen. Uiteindelijk zal het elektrochemisch ammonia synthese proces er komen vanwege de vele voordelen die het beidt. Processen moeten met een factor 100-1000 verbeterd worden eer het proces economisch rendabel is. Op dit moment is het nog niet te voospellen wanneer dit moment er is.
PowerPointpresentatie gebruikt bij een voordracht door lector Astrid Manhoudt van het lectoraat Weidevogels van hogeschool Van Hall Larenstein, tijdens een 2-daags congres over natuurinclusieve landbouw op 27 en 28 november 2019 te Kamerik.
MULTIFILE
Het doel van deze handleiding is om studenten kennis te laten maken met de Waterwijzer Landbouw en de Waterwijzer Natuur. De WWN en WWL zijn ontwikkeld door Wageningen University & Research (WUR) en Onderzoeksinstituut KWR. Met behulp van de WWL en WWN kan worden onderzocht hoe groot het verschil is tussen de optimale grondwaterdynamiek en de actuele grondwaterdynamiek voor landbouw en natuur. (STOWA, 2018). Gebruikers leren in deze handleiding wat het effect is van de waterhuishouding op natuur en gewasopbrengst. Ook kan met behulp van de Water Wijzers de effecten op gewasopbrengst in de landbouw en de doelrealisatie van grondwaterafhankelijke natuur inzichtelijk worden gemaakt. Landbouw en natuur vraagt immers specifieke eisen als het gaat om de waterhuishouding, zoals de grondwaterstand, kwel/infiltratie, bodem en klimatologische omstandigheden. Deze parameters worden voor beide software als input gebruikt. Kwel/infiltratie alleen bij Waterwijzer Natuur. De benodigde input parameters worden in Hoofdstuk 2.2 bij de Waterwijzer Landbouw en Hoofdstuk 3.2 bij de Waterwijzer Natuur toegelicht.
MULTIFILE
In het project ‘Landbouw in Klimaatrobuuste Beeklandschappen’ (SIA PVG.DZ21.03.004) zijn het bodem- en watersysteem, het agrarisch perspectief, de verdienmogelijkheden binnen dit landschap en de rol van governance uitgewerkt. De methodieken zijn aan de hand van drie verschillende casusgebieden opgesteld, getest en repliceerbaar gemaakt en hebben verschillende producten en rapportages opgeleverd. De gebruikte casusgebieden zijn het Koningsdiep (FR), de Buulder Aa (NB) en het Vechtdal (OV), drie verschillende maar wel vergelijkbare gebieden op zandgronden waar de aanwezigheid van lokale laagtes en hoogtes voor complexe dynamiek zorgen op het gebied van droogte en wateroverlast. Dit deelbestand is onderdeel van het grotere geheel. Houd er rekening mee dat deze informatie is gepubliceerd op 28-02-2025 en onderhevig kan zijn aan wijzigingen.
MULTIFILE