A promising contribution of Learning Analytics is the presentation of a learner's own learning behaviour and achievements via dashboards, often in comparison to peers, with the goal of improving self-regulated learning. However, there is a lack of empirical evidence on the impact of these dashboards and few designs are informed by theory. Many dashboard designs struggle to translate awareness of learning processes into actual self-regulated learning. In this study we investigate a Learning Analytics dashboard based on existing evidence on social comparison to support motivation, metacognition and academic achievement. Motivation plays a key role in whether learners will engage in self-regulated learning in the first place. Social comparison can be a significant driver in increasing motivation. We performed two randomised controlled interventions in different higher-education courses, one of which took place online due to the COVID-19 pandemic. Students were shown their current and predicted performance in a course alongside that of peers with similar goal grades. The sample of peers was selected in a way to elicit slight upward comparison. We found that the dashboard successfully promotes extrinsic motivation and leads to higher academic achievement, indicating an effect of dashboard exposure on learning behaviour, despite an absence of effects on metacognition. These results provide evidence that carefully designed social comparison, rooted in theory and empirical evidence, can be used to boost motivation and performance. Our dashboard is a successful example of how social comparison can be implemented in Learning Analytics Dashboards.
MULTIFILE
Background While low back pain occurs in nearly everybody and is the leading cause of disability worldwide, we lack instruments to accurately predict persistence of acute low back pain. We aimed to develop and internally validate a machine learning model predicting non-recovery in acute low back pain and to compare this with current practice and ‘traditional’ prediction modeling. Methods Prognostic cohort-study in primary care physiotherapy. Patients (n = 247) with acute low back pain (= one month) consulting physiotherapists were included. Candidate predictors were assessed by questionnaire at baseline and (to capture early recovery) after one and two weeks. Primary outcome was non-recovery after three months, defined as at least mild pain (Numeric Rating Scale > 2/10). Machine learning models to predict non-recovery were developed and internally validated, and compared with two current practices in physiotherapy (STarT Back tool and physiotherapists’ expectation) and ‘traditional’ logistic regression analysis. Results Forty-seven percent of the participants did not recover at three months. The best performing machine learning model showed acceptable predictive performance (area under the curve: 0.66). Although this was no better than a’traditional’ logistic regression model, it outperformed current practice. Conclusions We developed two prognostic models containing partially different predictors, with acceptable performance for predicting (non-)recovery in patients with acute LBP, which was better than current practice. Our prognostic models have the potential of integration in a clinical decision support system to facilitate data-driven, personalized treatment of acute low back pain, but needs external validation first.
MULTIFILE
The inherent complexity of planning at sea, called maritime spatial planning (MSP), requires a planning approach where science (data and evidence) and stakeholders (their engagement and involvement) are integrated throughout the planning process. An increasing number of innovative planning support systems (PSS) in terrestrial planning incorporate scientific models and data into multi-player digital game platforms with an element of role-play. However, maritime PSS are still early in their innovation curve, and the use and usefulness of existing tools still needs to be demonstrated. Therefore, the authors investigate the serious game, MSP Challenge 2050, for its potential use as an innovative maritime PSS and present the results of three case studies on participant learning in sessions of game events held in Newfoundland, Venice, and Copenhagen. This paper focusses on the added values of MSP Challenge 2050, specifically at the individual, group, and outcome levels, through the promotion of the knowledge co-creation cycle. During the three game events, data was collected through participant surveys. Additionally, participants of the Newfoundland event were audiovisually recorded to perform an interaction analysis. Results from survey answers and the interaction analysis provide evidence that MSP Challenge 2050 succeeds at the promotion of group and individual learning by translating complex information to players and creating a forum wherein participants can share their thoughts and perspectives all the while (co-) creating new types of knowledge. Overall, MSP Challenge and serious games in general represent promising tools that can be used to facilitate the MSP process.
LINK
Middels een RAAK-impuls aanvraag wordt beoogd de vertraging van het RAAK-mkb project Praktische Predictie t.g.v. corona in te halen. In het project Praktische Predictie wordt een prototype app ontwikkeld waarmee fysiotherapeuten in een vroeg stadium het chronisch worden van lage rugpijn kunnen voorspellen. Om chronische rugpijn te voorkomen is het belangrijk om in een vroeg stadium de kans hierop in te schatten door psychosociale en mogelijk andere risicofactoren op chronische pijnklachten te herkennen en hierop te interveniëren. Fysiotherapeuten zijn met deze vraag naar het lectoraat Werkzame factoren in Fysiotherapie en Paramedisch Handelen van de Hogeschool van Arnhem en Nijmegen gegaan en dit heeft aanleiding gegeven een onderzoek op te zetten waarin een dergelijke methodiek ontwikkeld wordt. De voorgestelde methodiek betreft een Clinical Decision Support Tool waarmee een geïndividualiseerde kans op chronische rugpijn kan worden bepaald gekoppeld aan een behandeladvies conform de lage rugpijn richtlijn. Hiervoor is eerst geïnventariseerd welke methoden fysiotherapeuten reeds gebruiken en welke in de literatuur worden genoemd. Op basis hiervan is een keuze gemaakt ten aanzien van data die digitaal verzameld worden in minimaal 16 fysiotherapiepraktijken waarbij patiënten gedurende 12 weken gevolgd worden. Met de verzamelde data worden met machine learning algoritmes ontwikkeld voor het berekenen van de kans op chroniciteit. De algoritmes worden ingebouwd in de Clinical Decision Support Tool: een gebruiksvriendelijke prototype app. Bij het ontwikkelen van de tool worden eindgebruikers (fysiotherapeuten en patiënten) intensief betrokken. Op deze manier wordt gegarandeerd dat de tool aansluit bij de wensen en behoeften van de doelgroep. De tool berekent de kans op chroniciteit en geeft een behandeladvies. Daarnaast kan de tool gebruikt worden om patiënten te informeren en te betrekken bij de besluitvorming. Vanwege de coronacrisis is er een aanzienlijke vertraging in de patiënten-instroom (doel n= 300) ontstaan die we met ondersteuning van een RAAK-impuls subsidie willen inlopen.
Onbetrouwbare oogstvoorspellingen in kassen veroorzaken onnodige kosten bij telers. Fontys/Green Tech Lab (GTL) is in een eerdere studie tot de conclusie gekomen dat het meten van de mogelijke oogst middels een camera systeem mogelijk is. Dit wordt ook wel ‘scouten’ genoemd. Dit heeft men al gedaan met paprika’s en komkommers. Nu is de vraag gekomen of dit ook mogelijk is voor het telen en voorspellen van de oogst van aardbeien: Strawberry Harvest Prediction. Nu wil men dit onderzoeken door het herkennen van vruchten en groeicurves (algoritmen) niet met echte beelden van de vruchten te doen, maar met digitale beelden als een ‘Digital Twin’. In deze virtuele kas worden virtuele planten met bloemetjes, vruchten en aardbeien ‘gekweekt’ middels de groeicurve van een aardbeiplant. Hiertoe heeft men een samenwerkingsverband opgericht met Kwekerij de Kemp BV en Kwekerij VieVerde BV (oogstvoorspelling m.b.v. kunstmatige intelligentie). Het samenwerkingsverband is voor dit doel opgericht en nieuw in deze samenstelling. GTL wil in een jaar tijd een proof of concept ontwikkelen van een systeem dat met behulp van een Digital Twin oogstvoorspellingen kan doen voor de teelt van aardbeien. Door de ontwikkeling van een Digital Twin kan veel sneller (wel 100 tot 1000 keer) een algoritme ontwikkeld worden. Het project levert een proof of concept op van een virtual strawberry harvest prediction -systeem dat d.m.v. Digital Twin technieken oogstvoorspellingen doet voor de teelt van aardbeien.