Dit paper is het eindproduct van leerarrangement 1 (Zin in Leren) van de HBO masteropleiding Leren en Innoveren. Het is een literatuurstudie naar blended learning en hoe blended learning kan bijdragen aan een beter leerresultaat van de student.
DOCUMENT
poster voor de EuSoMII Annual Meeting in Pisa, Italië in oktober 2023. PURPOSE & LEARNING OBJECTIVE Artificial Intelligence (AI) technologies are gaining popularity for their ability to autonomously perform tasks and mimic human reasoning [1, 2]. Especially within the medical industry, the implementation of AI solutions has seen an increasing pace [3]. However, the field of radiology is not yet transformed with the promised value of AI, as knowledge on the effective use and implementation of AI is falling behind due to a number of causes: 1) Reactive/passive modes of learning are dominant 2) Existing developments are fragmented 3) Lack of expertise and differing perspectives 4) Lack of effective learning space Learning communities can help overcome these problems and address the complexities that come with human-technology configurations [4]. As the impact of a technology is dependent on its social management and implementation processes [5], our research question then becomes: How do we design, configure, and manage a Learning Community to maximize the impact of AI solutions in medicine?
DOCUMENT
Conference Paper From the article: Abstract Learning analytics is the analysis and visualization of student data with the purpose of improving education. Literature reporting on measures of the effects of data-driven pedagogical interventions on learning and the environment in which this takes place, allows us to assess in what way learning analytics actually improves learning. We conducted a systematic literature review aimed at identifying such measures of data-driven improvement. A review of 1034 papers yielded 38 key studies, which were thoroughly analyzed on aspects like objective, affected learning and their operationalization (measures). Based on prevalent learning theories, we synthesized a classification scheme comprised of four categories: learning process, student performance, learning environment, and departmental performance. Most of the analyzed studies relate to either student performance or learning process. Based on the results, we recommend to make deliberate decisions on the (multiple) aspects of learning one tries to improve by the application of learning analytics. Our classification scheme with examples of measures may help both academics and practitioners doing so, as it allows for structured positioning of learning analytics benefits.
DOCUMENT
Multiple sclerosis (MS) is a severe inflammatory condition of the central nervous system (CNS) affecting about 2.5 million people globally. It is more common in females, usually diagnosed in their 30s and 40s, and can shorten life expectancy by 5 to 10 years. While MS is rarely fatal; its effects on a person's life can be profound, which signifies comprehensive management and support. Most studies regarding MS focus on how lymphocytes and other immune cells are involved in the disease. However, little attention has been given to red blood cells (erythrocytes), which might also be important in developing MS. Artificial intelligence (AI) has shown significant potential in medical imaging for analyzing blood cells, enabling accurate and efficient diagnosis of various conditions through automated image analysis. The project aims to implement an AI pipeline based on Deep Learning (DL) algorithms (e.g., Transfer Learning approach) to classify MS and Healthy Blood cells.
-Chatbots are being used at an increasing rate, for instance, for simple Q&A conversations, flight reservations, online shopping and news aggregation. However, users expect to be served as effective and reliable as they were with human-based systems and are unforgiving once the system fails to understand them, engage them or show them human empathy. This problem is more prominent when the technology is used in domains such as health care, where empathy and the ability to give emotional support are most essential during interaction with the person. Empathy, however, is a unique human skill, and conversational agents such as chatbots cannot yet express empathy in nuanced ways to account for its complex nature and quality. This project focuses on designing emotionally supportive conversational agents within the mental health domain. We take a user-centered co-creation approach to focus on the mental health problems of sexual assault victims. This group is chosen specifically, because of the high rate of the sexual assault incidents and its lifetime destructive effects on the victim and the fact that although early intervention and treatment is necessary to prevent future mental health problems, these incidents largely go unreported due to the stigma attached to sexual assault. On the other hand, research shows that people feel more comfortable talking to chatbots about intimate topics since they feel no fear of judgment. We think an emotionally supportive and empathic chatbot specifically designed to encourage self-disclosure among sexual assault victims could help those who remain silent in fear of negative evaluation and empower them to process their experience better and take the necessary steps towards treatment early on.
The growing use of digital media has led to a society with plenty of new opportunities for knowledge exchange, communication and entertainment, but also less desirable effects like fake news or cybercrime. Several studies, however, have shown that children are less digital literate than expected. Digital literacy has consequently become a key part within the new national educational policy plans titled Curriculum.nu and the Dutch research and policy agendas. This research project is focused on the role the game sector can play in the development of digital literacy skills of children. In concrete, we want to understand the value of the use of digital literacy related educational games in the context of primary education. Taking into consideration that the childhood process of learning takes place through playing, several studies claim that the introduction of the use of technology at a young age should be done through play. Digital games seem a good fit but are themselves also part of digital media we want young people to be literate about. Furthermore, it needs to be taken into account that digital literacy of teachers can be limited as well. The interactive, structured nature of digital games offers potential here as they are less dependent on the support and guidance of an adult, but at the same time this puts even more emphasis on sensible game design to ensure the desired outcome. The question is, then, if and how digital games are best designed to foster the development of digital literacy skills. By harnessing the potential of educational games, a consortium of knowledge and practice partners aim to show how creating theoretical and practical insights about digital literacy and game design can aid the serious games industry to contribute to the societal challenges concerning contemporary literacy demands.