In light of current worldwide developments, the conference theme “Value Diversity” explicitly refers to the changes we need to see.This contribution is about Life expectancy of people with a severe or profound intellectual disability. Their life expectancy increases, which contributes to the risk of developing dementia. However, early detection and diagnosing dementia is complex, because of their low-level baseline functioning. Therefore, the aim is to identify observable dementia symptoms in adults with severe or profound intellectual disability in available literature.
There has been a rapidly growing number of studies of the geographical aspects of happiness and well-being. Many of these studies have been highlighting the role of space and place and of individual and spatial contextual determinants of happiness. However, most of the studies to date do not explicitly consider spatial clustering and possible spatial spillover effects of happiness and well-being. The few studies that do consider spatial clustering and spillovers conduct the analysis at a relatively coarse geographical scale of country or region. This article analyses such effects at a much smaller geographical unit: community areas. These are small area level geographies at the intra-urban level. In particular, the article presents a spatial econometric approach to the analysis of life satisfaction data aggregated to 1,215 communities in Canada and examines spatial clustering and spatial spillovers. Communities are suitable given that they form a small geographical reference point for households. We find that communities’ life satisfaction is spatially clustered while regression results show that it is associated to the life satisfaction of neighbouring communities as well as to the latter's average household income and unemployment rate. We consider the role of shared cultural traits and institutions that may explain such spillovers of life satisfaction. The findings highlight the importance of neighbouring characteristics when discussing policies to improve the well-being of a (small area) place.
In order to overcome cancer-related problems and to improve quality of life, an intensive multi-focus rehabilitation programme for cancer patients was developed. We hypothesised that this six-week intensive rehabilitation programme would result in physiological improvements and improvement in quality of life. Thirty-four patients with cancer-related physical and psychosocial problems were the subjects of a prospective observational study. A six-week intensive multi-focus rehabilitation programme consisted of four components: individual exercise, sports, psycho-education, and information. Measurements (symptom-limited bicycle ergometry performance, muscle force and quality of life [RAND-36, RSCL, MFI]) were performed before (T0) and after six weeks of rehabilitation (T1). After the intensive rehabilitation programme, statistically significant improvements were found in symptom-limited bicycle ergometry performance, muscle force, and several domains of the RAND-36, RSCL and MFI. The six-week intensive multi-focus rehabilitation programme had immediate beneficial effects on physiological variables, on quality of life and on fatigue.
Multiple sclerosis (MS) is a severe inflammatory condition of the central nervous system (CNS) affecting about 2.5 million people globally. It is more common in females, usually diagnosed in their 30s and 40s, and can shorten life expectancy by 5 to 10 years. While MS is rarely fatal; its effects on a person's life can be profound, which signifies comprehensive management and support. Most studies regarding MS focus on how lymphocytes and other immune cells are involved in the disease. However, little attention has been given to red blood cells (erythrocytes), which might also be important in developing MS. Artificial intelligence (AI) has shown significant potential in medical imaging for analyzing blood cells, enabling accurate and efficient diagnosis of various conditions through automated image analysis. The project aims to implement an AI pipeline based on Deep Learning (DL) algorithms (e.g., Transfer Learning approach) to classify MS and Healthy Blood cells.
The postdoc candidate, Sondos Saad, will strengthen connections between research groups Asset Management(AM), Data Science(DS) and Civil Engineering bachelor programme(CE) of HZ. The proposed research aims at deepening the knowledge about the complex multidisciplinary performance deterioration prediction of turbomachinery to optimize cleaning costs, decrease failure risk and promote the efficient use of water &energy resources. It targets the key challenges faced by industries, oil &gas refineries, utility companies in the adoption of circular maintenance. The study of AM is already part of CE curriculum, but the ambition of this postdoc is that also AM principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop an AM material science line and will facilitate applied research experiences for students, in collaboration with engineering companies, operation &maintenance contractors and governmental bodies. Consequently, a new generation of efficient sustainability sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment being more sustainable with less CO2 footprint, with possible connections with other fields of study, such as Engineering, Economics &Chemistry. The project is also strongly contributing to the goals of the National Science Agenda(NWA), in themes of “Circulaire economie en grondstoffenefficiëntie”,”Meten en detecteren: altijd, alles en overall” &”Smart Industry”. The final products will be a framework for data-driven AM to determine and quantify key parameters of degradation in performance for predictive AM strategies, for the application as a diagnostic decision-support toolbox for optimizing cleaning &maintenance; a portfolio of applications &examples; and a new continuous learning line about AM within CE curriculum. The postdoc will be mentored and supervised by the Lector of AM research group and by the study programme coordinator(SPC). The personnel policy and job function series of HZ facilitates the development opportunity.